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Abstract

Attribute-based encryption (ABE) cryptographically implements fine-grained access
control on data. In particular, data can be stored by an entity that is not necessarily
trusted to enforce access control, or an entity that is not even trusted to have access
to the plaintext data at all. Instead, access control can be externally enforced by
a trusted authority. Additionally, some multi-authority variants of ABE—which do
not have a central authority—can effectively and securely implement access control in
multiple-domain settings. Furthermore, ABE is the only cryptographic approach to
fine-grained access control that does not require an online trusted third party during
access requests, and thus provides better availability properties than more traditional
access control mechanisms.

The actual realization of these theoretical advantages in practice depends on
whether state-of-the-art ABE schemes support the necessary core properties. In this
thesis, we investigate which properties are necessary, and how these properties can be
realized efficiently and securely in pairing-based ABE. To this end, we use and build
on the pair encodings framework, which simplifies the design and analysis of complex
ABE schemes by abstracting the schemes to pair encodings. Among other reasons,
we use this framework to simplify the cryptanalysis of existing schemes, which shows
that several popular multi-authority schemes are broken. Furthermore, we use the
common structure of schemes that fit in this framework to fairly benchmark multiple
schemes. These benchmarks reveal that existing schemes that support several de-
sirable core properties incur a significant (and fixed) trade-off in the computational
efficiency of the encryption and decryption algorithms.

An additional feature of the pair encodings framework is that it allows us to
generically realize several core properties that are otherwise difficult to realize. Such
properties can be attained by applying transformations to the encodings, which are
proven to preserve the security of the original encoding. These transformations are
generic, and can therefore be applied to any secure pair encoding. However, the pair
encodings framework has two shortcomings. First, it supports only single-authority
ABE. To efficiently and securely support multi-authority ABE, we first extend the
framework, by generalizing the definition of pair encodings. Second, as our bench-
marks also underline, existing schemes in the pair encodings framework do not pro-
vide flexible efficiency trade-offs, either incurring high encryption or high decryption
costs. Hence, we provide two schemes that allow for a more flexible approach. In
particular, practitioners can fine-tune the schemes’ efficiency trade-offs based on the
computational resources of the encryption and decryption devices. Specifically, the
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first scheme, GLUE, has a flexible efficiency trade-off between the encryption and
decryption algorithms, and can in particular implement an efficient decryption algo-
rithm. The second scheme, TinyABE, has a flexible efficiency trade-off between the
size of the master public key and the sizes of the ciphertexts, and can in particu-
lar implement an efficient encryption algorithm. We also present a novel conversion
technique that generically and efficiently transforms any (passively) secure scheme in
the pair encodings framework to a scheme that additionally provides security against
chosen-ciphertext attacks. In contrast to existing conversion techniques that achieve
this, ours incurs only a small constant overhead in all algorithms. In sum, this thesis
helps us to attain the necessary core properties more efficiently for certain settings
than was previously possible.
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Samenvatting

Op attributen-gebaseerde encryptie (ABE) implementeert cryptografisch een fijn-
mazige toegangscontrole op data. In het bijzonder kan data opgeslagen worden door
een entiteit die niet noodzakelijkerwijs vertrouwd wordt om toegangscontrole af te
dwingen, of een entiteit die niet eens vertrouwd wordt om zelf toegang tot deze data
te hebben. In plaats daarvan kan een externe vertrouwde autoriteit toegangscontrole
afdwingen. Daarnaast bestaan er multi-autoriteit varianten van ABE—die geen cen-
trale autoriteit hebben—die effectief en veilig toegangscontrole kunnen implementeren
in toepassingen met meerdere domeinen. Daar komt nog bij dat ABE de enige
cryptografische oplossing is om toegangscontrole te implementeren die geen online
vertrouwde partij nodig heeft bij ieder toegangsverzoek, en daardoor betere beschik-
baarheidseigenschappen biedt dan meer traditionele mechanismen voor toegangscon-
trole.

De daadwerkelijke realisatie van deze theoretische voordelen in de praktijk hangt
af van het feit of de nieuwste ABE schema’s de noodzakelijke basiseigenschappen
hebben. In dit proefschrift onderzoeken we welke eigenschappen nodig zijn, en hoe
ze efficient en veilig gerealiseerd kunnen met bilineaire afbeeldingen. Om dit doel te
bereiken gebruiken we en bouwen we op het raamwerk voor paarencoderingen, het-
geen het construeren en analyseren van complexe ABE schema’s versimpelt door de
schema’s te abstraheren naar paarencoderingen. We gebruiken dit raamwerk onder
andere om de cryptanalyse van bestaande schema’s te versimpelen, hetgeen laat zien
dat verschillende populaire multi-autoriteit schema’s gebroken zijn. We gebruiken
ook de gemeenschappelijke structuur van schema’s die bevat zijn in dit raamwerk
om de efficiëntie van meerdere schema’s op een eerlijke manier te vergelijken. Deze
vergelijkingen laten zien dat bestaande schema’s met meerdere wenselijke basiseigen-
schappen een significante (en vaste) afweging bieden in computationele efficiëntie van
de encryptie- en decryptiealgoritmes.

Een extra kenmerk van het raamwerk voor paarencoderingen is dat het mogelijk
is om meerdere basiseigenschappen op een generieke manier te realiseren die normaal
gesproken lastig te realiseren zijn. Zulke eigenschappen kunnen dan behaald worden
door transformaties toe te passen op de encodering, waarvan bewezen is dat deze de
veiligheid van de originele encodering bewaren. Deze transformaties zijn generiek,
en kunnen daarom toegepast worden op iedere veilige paarencodering. Echter heeft
het raamwerk voor paarencoderigen twee tekortkomingen. Ten eerste is dit raamwerk
alleen van toepassing op ABE schema’s met een enkele autoriteit. Om toch op een
efficiënte en veilige manier meerdere autoriteiten te ondersteunen breiden we eerst het
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raamwerk uit, door de bestaande definitie van paarencoderingen te generaliseren. Ten
tweede, zoals onze vergelijkingen hebben laten zien, bieden bestaande schema’s in dit
raamwerk geen flexibele afwegingen in de efficiëntie. Ze hebben ofwel een inefficiente
encryptie of decryptie. Daarom introduceren wij twee schema’s met een flexibelere
aanpak. In het bijzonder kunnen praktisch georienteerde mensen de afweging in effi-
ciëntie van de schema’s afstellen zodat ze de rekenkundige middelen van de encryptie-
en decryptieapparaten in acht nemen. Het eerste schema, GLUE, heeft een flexibele
afweging in efficiëntie tussen de encryptie- en decryptiealgoritmes, en kan daardoor
een efficiënt decryptiealgoritme implementeren. Het tweede schema, TinyABE, heeft
een flexibele afweging in efficiëntie tussen de groottes van de hoofdsleutel en de cijfer-
tekst, en kan ook een efficiënt encryptiealgoritme implementeren. We introduceren
ook een nieuwe conversietechniek die generiek en efficiënt een passief veilige schema
in het raamwerk voor paarencoderingen kan transformeren in een schema dat ook
veilig is tegen gekozen-cijfertext aanvallen. In tegenstelling tot bestaande conversi-
etechnieken die dit doen zorgt onze transformatie ervoor dat de extra kosten voor alle
algoritmes klein en constant zijn. Kortom, dit proefschrift helpt ons om de noodzake-
lijke basiseigenschappen te behalen op een efficientere manier voor bepaalde situaties
dan eerder mogelijk was.
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Chapter 1

Introduction

Would it not be great to be able to encrypt a document so that it can only be decrypted
and accessed by e.g., all epidemiologists of the Radboud University Medical Center
(Radboudumc for short), or any patient who is between 18 and 65 years old, or a
specific patient called Alice, who was born on March 14, 2007 and currently resides
in Nijmegen? An encryption scheme that provides this functionality would enable
individuals to share data in a secure yet flexible way.

Traditional public-key encryption does not effectively provide this functionality.
Typically, it is used to allow access to confidential data to one particular entity, which
must be known at the time the data are encrypted (by using its public key). Only
this entity can later access the data by decrypting the associated ciphertext (by using
its secret key). Attribute-based encryption (ABE) [SW05] is a form of public-key
encryption in which the key pairs are associated with attributes rather than individual
users or entities. For instance, in ciphertext-policy ABE [BSW07], the encrypting user
can decide who gets access to the data by specifying a policy during encryption, e.g.,
any “epidemiologist” at the “Radboudumc” or any “patient” with an “age in the range
[18, 65]”. The ability to decrypt the resulting ciphertext is then determined by the
attributes owned by the decrypting user, who must be an “epidemiologist” at the
“Radboudumc” or be a “patient” with an “age in the range [18, 65]”. Thus, data that
are encrypted with ABE can be accessed by multiple authorized users, making ABE
inherently more flexible than traditional public-key encryption.

Based on its functionality, attribute-based encryption can cryptographically im-
plement fine-grained access control on data [GPSW06a, BSW07, PTMW10]. Like
most traditional access control mechanisms [SCFY96, HFK+19], it relies on a trusted
third party (TTP). This TTP enforces access control on the data, by granting or
denying users who wish to access those data. Nevertheless, compared to those tra-
ditional access control mechanisms, ABE requires less trust in and less reliance on
this TTP. First, because ABE is a cryptographic primitive, the data are encrypted
and can thus be stored by an entity that is not necessarily trusted to securely enforce
access control or to access the data at all. To ensure that the data are always accessi-
ble, they can be stored on (multiple) high-availability servers. In contrast, traditional
access control mechanisms typically require the data to be stored by the same TTP
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that enforces access on those data. This TTP therefore needs to be trusted to enforce
access and provide availability. Second, as we will show later, ABE does not neces-
sarily require the TTP to be online during each access request, allowing users to act
more autonomously. Importantly, minimizing the role of the TTP in the enforcement
of access control in this way also fosters the availability of the data.

In ABE, the key generation authority (KGA) constitutes such a trusted third
party. The KGA generates the master public keys and the master secret keys, from
which it derives secret keys and issues these to eligible users. Once the users have
received secret keys, they can decrypt any ciphertexts for which they have a suitable
key. In turn, access to data can be managed by the data owner using encryption.
Then, access to these data is indirectly enforced by the KGA, which provides only
eligible users with keys that can decrypt the resulting ciphertext. In addition, some
variants of ABE, called multi-authority ABE (MA-ABE) [Cha07], support the em-
ployment of multiple (possibly mutually distrusting) KGAs. This allows for the secure
enforcement of access control in multiple-domain or cross-organizational settings, e.g.,
electronic health record (EHR) systems involving hospitals and insurance companies.
Owing to all these advantages, ABE has attracted much interest from the practical
community [ETS18a, ETS18b, KL10, SRGS12, BSS+22, LVV+23].

In particular, we want to highlight the standardization efforts of the European
Telecommunications Standards Institute (ETSI). In 2018, ETSI published two tech-
nical reports on ABE [ETS18a, ETS18b], describing various use cases in which ABE
can be used to cryptographically enforce access control. For each use case, ETSI
lists the high-level requirements that ABE needs to satisfy, e.g., regarding the types
of policies that need to be supported. Furthermore, the relevant entities and their
roles in the use case are described in detail. From this description, the computa-
tional resources of each entity can be estimated, which can be subsequently used to
set up requirements for the scheme’s efficiency. In general, we observe that these
requirements may vary. For example, the Internet of Things use case assumes the en-
cryption devices to be resource constrained and therefore benefits from ABE with fast
encryption, while the federated WLAN use case may benefit from a fast decryption.

1.1 Our goal
As the title of this thesis suggests, we focus on attaining basically everything in
attribute-based encryption. More specifically, we mean that we aspire to achieve
all core properties needed for a specific practical setting as efficiently as possible,
to maximize the advantages of ABE. We aim to do this by simplifying the design
of practical ABE schemes, specifically via pair encodings, and by exploring (possi-
bly hidden) dependencies among various existing constructions. First, we investigate
which properties may be required for practice, and which can already be satisfied
efficiently (in Chapter 2). This investigation reveals that there is still some room
for improvement, especially with regard to the efficiency of existing schemes. We
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pose several future directions that address these improvements. In the remainder of
this thesis, we focus on several of these future directions, helping ABE to become
more practical. In particular, we aim to support any property as generically and as
efficiently as possible. A property is generically supported if some “basic” scheme
with certain security properties can be generically transformed into a provably secure
scheme with that property. By supporting properties generically, a suitable scheme
can be efficiently constructed for any specific setting, such that it satisfies only the
necessary properties. This is more favorable than using a scheme satisfying all prop-
erties that could be necessary in practice, because the support of certain properties
often incurs a performance penalty. For example, supporting negations in the policies
may be costly (Section 2.5.7). Consequently, the scheme satisfying all properties may
not be the most efficient choice for that specific setting. In this thesis, we investigate
and propose some basic schemes that satisfy several desirable properties. If necessary,
these schemes can be securely extended to satisfy other desirable properties that incur
a performance penalty. In this way, the most efficient scheme satisfying all necessary
properties can be chosen for some specific practical setting.

1.2 Structure
This thesis consists of three parts (Figure 1.1):

• Part I: Introduction to ABE: In this part, we introduce ABE and system-
atize its core properties (Chapter 2), and we provide other necessary theoretical
background required for the remainder of this thesis (Chapter 3).

• Part II: The pair encodings framework: In this part, we introduce the
pair encodings framework (Chapter 4). This is a well-known framework that
considers an abstraction of a large class of pairing-based ABE to simplify the de-
sign of secure schemes: pair encodings. Additionally, this framework generically
supports several properties that are otherwise difficult to attain. We extend the
framework with a new compiler, which efficiently transforms any secure pair
encoding into a selectively secure ABE scheme. We also use pair encodings to
simplify the cryptanalysis of ABE schemes, which we systematically apply to
several existing schemes (Chapter 5). Lastly, we use the common structure of
schemes that can be captured in the pair encodings framework to simplify the
fair benchmarking of multiple ABE schemes (Chapter 6).

• Part III: New constructions and generic transformations: In this part,
we give several new constructions and generic transformations in the pair en-
codings framework. First, we introduce GLUE, a new ABE scheme with flexible
efficiency trade-offs between the encryption and decryption algorithms that can
achieve all necessary core properties (Chapter 7). Practitioners can fine-tune
GLUE to achieve the most desirable efficiency trade-off between encryption and
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Chapter 2

Chapter 3
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Chapter 5

Chapter 6

Part II

Chapter 7

Chapter 9

Chapter 8

Part III

Figure 1.1. Overview of this thesis. The arrows indicate the dependencies among the parts
and chapters.

decryption for a specific setting. In particular, this scheme can attain the most
efficient decryption compared to existing schemes with the same properties.
Second, we introduce TinyABE, another ABE scheme with flexible efficiency
trade-offs, but between the sizes of the master public key and the ciphertexts.
TinyABE is specifically designed for settings involving the Internet of Things
(Chapter 8). In particular, TinyABE can be configured such that the keys and
ciphertexts are small enough for the relevant devices, and such that encryption
is really fast. Finally, we introduce new generic transformations for chosen-
ciphertext security. These transformations efficiently transform any scheme in
the pair encodings framework—which are only secure against chosen-plaintext
attacks—to a scheme that is secure against chosen-ciphertext attacks, and are
subsequently sufficiently secure for practice (Chapter 9).

1.3 Contributions
This thesis is based on multiple papers to which I contributed. Specifically, each
chapter corresponds roughly to one paper.

Chapter 2: This chapter is based on the paper

M. Venema, G. Alpár, and J.-H. Hoepman. Systematizing core prop-
erties of pairing-based attribute-based encryption to uncover remaining
challenges in enforcing access control in practice. Des. Codes Cryptogr.,
91(1):165–220, 2023
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of which I am the main author. My co-authors helped me with the presentation of
the contents, mostly through discussions and proofreading.

Chapter 4: This chapter is partly based on the paper

M. Venema. A practical compiler for attribute-based encryption: New
decentralized constructions and more. In M. Rosulek, editor, CT-RSA,
volume 13871 of LNCS, pages 132–159. Springer, 2023

of which I am the sole author. Compared to the paper, this chapter contains more
information on the pair encodings framework, as well as examples of schemes and
proofs.

Chapter 5: This chapter is based on the paper

M. Venema and G. Alpár. A bunch of broken schemes: A simple yet power-
ful linear approach to analyzing security of attribute-based encryption. In
K. G. Paterson, editor, CT-RSA, volume 12704 of LNCS, pages 100–125.
Springer, 2021

of which I am the main author. My supervisor helped me with the presentation of
the contents, mostly through discussions and proofreading. This paper also led to the
collaborative implementation of several attacks, which we presented in a briefing at
Black Hat Europe:

A. de la Piedra and M. Venema. Practical attacks against attribute-based
encryption. At Black Hat Europe, 2021

Chapter 6: This chapter is based on the paper

A. de la Piedra, M. Venema, and G. Alpár. ABE squared: Accurately
benchmarking efficiency of attribute-based encryption. TCHES, 2022(2):192–
239, 2022

which is a collaborative effort. For this paper, I have provided most of the theoretical
contributions, including the type-conversion methods, the specifications of the type-
converted schemes and the analysis of the benchmarks.

Chapter 7: This chapter is based on the paper

M. Venema and G. Alpár. GLUE: generalizing unbounded attribute-
based encryption for flexible efficiency trade-offs. In A. Boldyreva and
V. Kolesnikov, editors, PKC, volume 13940 of LNCS, pages 652–682.
Springer, 2023

of which I am the main author. My supervisor helped me with the presentation of
the contents, mostly through discussions and proofreading.
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Chapter 8: This chapter is based on the paper

M. Venema and G. Alpár. TinyABE: Unrestricted ciphertext-policy attribute-
based encryption for embedded devices and low-quality networks. In
L. Batina and J. Daemen, editors, AFRICACRYPT, volume 13503 of
LNCS, pages 103–129. Springer, 2022

of which I am the main author. My supervisor helped me with the presentation of
the contents, mostly through discussions and proofreading.

Chapter 9: This chapter is based on the paper

M. Venema and L. Botros. Efficient and generic transformations for
chosen-ciphertext secure predicate encryption. Cryptology ePrint Archive,
Paper 2022/1436, 2022

which is currently under submission, and of which I am the main author. My co-
author proofread the paper, and implemented the schemes. Together, we wrote the
performance analysis section.

1.4 Research data management
This thesis research has been carried out under the research data management policy
of the Institute for Computing and Information Science of Radboud University, The
Netherlands.1 The code for Chapters 6, 7, 8 and 9 is available in the public domain
under an open-source license, and can be accessed at https://mtcvenema.nl/ or
accessed as a single archive at https://doi.org/10.5281/zenodo.8163274. The
code is also accessible in the following repositories.

Chapter 6: https://github.com/abecryptools/abe_squared

Chapter 7: https://github.com/mtcvenema/glue

Chapter 8: https://github.com/mtcvenema/tinyabe

Chapter 9: https://github.com/leonbotros/pe_cca

1https://www.ru.nl/icis/research-data-management/, last accessed October 27th, 2022.

https://mtcvenema.nl/
https://doi.org/10.5281/zenodo.8163274
https://github.com/abecryptools/abe_squared
https://github.com/mtcvenema/glue
https://github.com/mtcvenema/tinyabe
https://github.com/leonbotros/pe_cca
https://www.ru.nl/icis/research-data-management/
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Chapter 2

Systematizing core properties of
pairing-based ABE to uncover remaining
challenges in enforcing access control in

practice

Much progress has been made in the last two decades in pairing-based ABE
schemes, owing to their versatility and efficiency. In fact, it is possible to
support most core properties under strong security guarantees, while incurring
acceptable storage and computational costs. It is therefore a good time to ask
ourselves whether pairing-based ABE has reached its full practical potential.
To answer this question, we provide a comprehensive systematized overview of
various existing pairing-based ABE schemes and their core properties in this
chapter. We also investigate the relationship between these core properties and
real-world access control requirements. We show that a few challenges remain,
that must be overcome for ABE to reach its full potential as a mechanism to
implement efficient and secure access control in practice.

2.1 Introduction
For the past two decades, the theoretical cryptography community has made much
progress in pairing-based ABE [SW05], leading to many publications at prominent
conferences, and thus establishing itself as an important and popular research topic.
Many schemes have been proposed that vary significantly in the core properties, which
determine the basic functionality, efficiency, and security. Some examples of core
properties include the level of fine-grainedness of the access policies1, the performance
of the scheme, and the underlying cryptographic assumptions. Some core properties

1For example, can the scheme support Boolean formulas such as (“doctor” OR “nurse”) AND
“Radboudumc”, and can it support negations, e.g., NOT “oncology department”?
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may be more desirable for practical applications than others. Ideally, a scheme that
supports most or all of these properties is used for these applications. Nowadays,
pairing-based ABE has reached a level of maturity such that most of the desirable
core properties can be achieved simultaneously, whilst attaining both strong security
guarantees as well as acceptable storage and computational performance [KW19b,
Att19, LL20a, AT20]. Given these developments, a natural question that arises is:

To what extent has pairing-based ABE reached its full practical potential?

In this chapter, we work towards answering this question. To this end, we focus
on the core properties of ABE, as they strongly influence the basic functionality
and efficiency of any pairing-based ABE scheme in practice. Concretely, we identify
the main core properties as defined through the years, which we will list briefly in
Section 2.1.3 and discuss in more detail in Section 2.3. For these properties, we provide
unified definitions, and give an overview of prominent schemes and the properties they
satisfy. By considering an example of a practical setting, we argue which properties are
desirable. Then, we consider if and how these desirable properties can be achieved
simultaneously. To obtain a better understanding of the interplay between these
various properties, we analyze how these are realized in the existing pairing-based
schemes and whether they are compatible with one another. Furthermore, provided
that they are compatible, we consider the effect of satisfying all these properties
simultaneously on other practical aspects, such as efficiency and availability. Along
the way, we uncover a number of remaining challenges, which we pose as directions
for future research. We encourage the (theoretical) community to explore these, as it
could make ABE even more practical, mitigating the disadvantages of ABE compared
to other primitives for implementing access control, whilst amplifying its advantages.

To place properties specific to ABE in a practical context, we will first describe
a large-scale medical scenario in which access control to data is enforced through
cryptography. In general, the implemented access control mechanism should support
properties such as confidentiality, integrity, and availability [SS94]. In particular,
for such large-scale real-world settings, it is important that these properties can be
simultaneously guaranteed in the best way possible. On the one hand, properties such
as confidentiality and even integrity have been considered at length in the context of
ABE. On the other hand, properties such as availability have been treated in much less
detail. In this work, we also investigate the relationship between the ABE properties
and these three real-world properties. Specifically, we will introduce the new notion
of resilience in the context of ABE to foster a deeper understanding of availability
in real-world settings using ABE. Roughly speaking, resilient ABE minimizes the
required interaction between the user and the KGA. By minimizing the required
interaction, the user is less dependent on the KGA’s availability. Furthermore, we
consider how better availability properties can be achieved in multi-authority ABE
(MA-ABE) by analyzing existing work. MA-ABE with such availability properties
can provide advantages in implementing access control in the multiple-domain setting
compared to other solutions.
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Ultimately, the goal of our analyses is to help pairing-based ABE reach its full
potential. By considering the interplay between the core properties as well as their
relationship with real-world (security) properties, we strive to obtain as much func-
tionality, security and efficiency as possible. At the same time, we want to highlight
the advantages of ABE in the implementation of access control compared to other
solutions. Therefore, we pose several directions for future research that help ABE
become even more practical.

2.1.1 Our contribution
Our contribution in this chapter is fourfold.

• Systematization of knowledge: We provide an extensive overview and sys-
tematization of the core properties of ABE. To this end, we analyze over fifty im-
portant pairing-based ABE schemes—each published at a prominent conference—
and their properties.

• Interplay of properties: We analyze how the core properties are realized to
understand whether and how they can be achieved simultaneously. Furthermore,
we analyze the influence of these core properties on real-world security properties
such as availability.

• New insights: Sometimes, this analysis leads to deeper, novel insights, explic-
itly conveyed as observations throughout this chapter.

• New research directions: Based on the analysis, the systematization and
observations, we identify several directions for future research that are relevant
to improve the practical advantages of ABE. We encourage the cryptographic
community to explore these directions.

To the best of our knowledge, this is the first in-depth overview of pairing-based ABE
that discusses the interplay between different core properties as well as their practical
impact.

2.1.2 Scope and approach
We focus primarily on pairing-based attribute-based encryption for (non-)monotone
span programs (which include Boolean formulas2), although the first sections of this
chapter are general in the sense that they describe a broader class of ABE. The
main reason for our focus on pairing-based schemes is that they are more established,
efficient and practical than works based on e.g., multilinear maps [GGH+13] or post-
quantum assumptions [Boy13]. While these are interesting in their own right, we

2An example of a monotone Boolean formula is (“doctor” OR “nurse”) AND “Radboudumc”.
The scheme also supports non-monotone formulas if it supports negations, e.g., NOT “oncology
department”.
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believe that it would be more suitable to address concerns specific to these subfields
once they have reached a similar maturity as pairing-based ABE. Furthermore, we
consider ABE for (non-)monotone span programs, because these provide sufficient
expressivity that is expected in access control mechanisms. ABE for more fine-grained
classes of expressivity such as circuits [GVW15] or ABE that additionally supports
inner-product computations [ACGU20] are typically also less efficient or are secure
in weaker models. Finally, we focus primarily on the core properties of ABE, and
therefore do not extensively discuss other practical extensions, such as revocation
(and see more examples in Section 2.10). While these extensions are important and
may provide some interesting benefits in practice, we leave any systematized analysis
of these for future work. We have also excluded any broken schemes (e.g., Chapter 5)
or any schemes that lack a proper security analysis.

In this chapter, we do not necessarily strive for formality. On the contrary, one
of our aims is to make the field of ABE more accessible to the practical community.
In particular, we have moved away from the heavy notation and complicated formal
concepts in the newer works. Nevertheless, we have included their accomplishments.
This chapter does contain some formal definitions and models, but only of the most
common and established concepts.

For convenience, we refer to the schemes by concatenating the first letter of each
author’s surname with the last two digits of the year of publication, e.g., the scheme
published by Rouselakis and Waters in 2013 [RW13] is referred to as the RW13 scheme.

2.1.3 The core properties of ABE
One of the main components of this chapter is that we explore and analyze the core
properties of ABE (defined and discussed in more detail in Section 2.3), which are

• the level of expressivity the scheme supports in its access policies;

• whether the scheme is key-policy or ciphertext-policy based;

• whether the scheme supports small or large universes, i.e., which distinguishes
between whether it can support any string as attribute or not;

• whether the scheme is bounded in any of the parameters or not.

In addition, we analyze multi-authority ABE, which employs multiple key generation
authorities. We highlight this particular extension of ABE because of its unique
advantages in enforcing access control in practice.

2.1.4 Target audience and goal
The target audience for this chapter is wide, and includes practitioners, cryptographic
engineers and cryptographers (both newcomers to the field of ABE and experts). In
part, the reason for this is that our ultimate goal is to investigate to what extent
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pairing-based ABE has reached its full practical potential with respect to the core
properties. To this end, we also explore the basics of ABE and the requirements for
ABE when it is employed in practice. Our goal is therefore threefold:

• introducing new cryptographers to the area of ABE;

• informing practitioners about the potential of ABE;

• encouraging experts in ABE (and related areas) to address the future directions.

Note that some of those future directions may be more general than others, in the
sense that they extend to other fields of cryptography as well. For instance, they
could also pertain to related areas in pairing-based cryptography, or exploring these
directions could require expertise in related fields such as cryptographic engineering.

2.1.5 Organization
Because of the wide range of aspects that this chapter considers, we make the depen-
dencies among the sections explicit. In Figure 2.1, we illustrate several possible ways
to read this chapter. In particular,

• Sections 2.2, 2.3 and 2.4 describe the general concepts of ABE in a practi-
cal context, which might be of interest to any readers who want to know more
about the practical advantages of ABE in general, including novel (ABE) cryp-
tographers and practitioners. These concepts are general in the sense that they
are applicable not only to pairing-based but to every existing ABE scheme;

• Sections 2.5, 2.6 and 2.7 discuss pairing-based ABE with respect to the
general concepts, as well as the storage and computational efficiency of pairing-
based ABE, which may be of interest to cryptographers and cryptographic en-
gineers;

• Section 2.8 focuses on multi-authority ABE, which may be of interest to cryp-
tographers, and practitioners who wish to deploy ABE in the multiple-domain
setting. In this section, we re-contextualize the notions of distributed and de-
centralized, and systematically classify existing schemes;

• Section 2.9 considers the availability properties of ABE by putting forth the
new notion of resilience. This section may be of interest to practitioners and
cryptographers;

• Section 2.10 discusses some additional functionality, which may be of interest
to practitioners;

• Section 2.11 covers our taxonomy, which may be of interest to practitioners
and novel cryptographers;

• Section 2.12 concludes this chapter.
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Introduction
(Section 2.1)

Deploying ABE in practice
(Sections 2.2, 2.3 and 2.4)

Pairing-based ABE properties
(Sections 2.5, 2.6 and 2.7)

Taxonomy
(Section 2.11)

ABE in multi-domain settings
(Section 2.8)

Availability of ABE systems
(Section 2.9)

Additional functionality
(Section 2.10)

Conclusion
(Section 2.12)

Figure 2.1. The general structure of this chapter.

2.2 Practical motivation: access control
ABE allows for the secure and practical enforcement of fine-grained access control
on data. On the one hand, ABE ensures that the data are encrypted, such that the
storing (or transporting) entity cannot read the plaintext data. On the other hand,
by its functionality, ABE ensures that access control can be enforced externally by
a trusted entity. This allows data to be securely stored and managed on untrusted
platforms, such as the cloud or servers managed by other (untrusted) entities. By
extension, this also simplifies the enforcement of access control on data in settings
where multiple mutually distrusting stakeholders are at play.

Example use case: electronic health records. As an example, consider electronic
health record (EHR) systems, planned to be used on a large scale [HSN08]. While
the use of EHR systems simplifies the sharing of health records across organizations,
jurisdictions or countries, it also increases the risk of infringing upon the privacy rights
of individuals [HMCB11]. To address these privacy concerns, existing solutions often
use access control to manage access to the data. It varies, though, which access control
model is used, who defines and assigns user roles and access policies, and who grants
access to the data [ASLT13]. Generally, the most common access control models in
such health settings are role-based access control (RBAC) [SCFY96] and attribute-
based access control (ABAC) [HFK+19]. In addition, to ensure confidentiality, these
solutions require the data to be encrypted, though security problems may still arise.
In practice, the keys are frequently stored by the same entity that stores the data
[ASLT13]. Effectively, the entity storing the keys enforces access control on the data,
and must therefore be highly trusted. Also, this entity needs to be available when
access is requested. In multiple-domain settings—in which data pertaining to one
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individual may be stored or produced by different entities—such a degree of trust may
be problematic; especially, if each entity wants to enforce access control regardless of
where the data are stored. We show that ABE can provide a secure solution, even in
the multiple-domain setting.

Issues in traditional access control mechanisms. We briefly illustrate what such
an EHR system may look like, and what availability and scalability issues may occur
when traditional access control mechanisms are applied. Consider a medical scenario
with a hospital and an insurance company that want to use an EHR system using a
traditional form of access control. A patient at the hospital may want to share some
of her private data, stored at the hospital, with both her doctor and an employee at
her insurance company. Some employee at the insurance company can then request
access to the data by contacting the server at the hospital. To grant access, the
server needs to know the access policy and contact the insurance company to verify
whether the requesting user is an employee. Hence, during an access request, all
relevant entities (e.g., the hospital and the insurance company) need to be available.
In more complex scenarios, with access policies involving many entities, possibly from
different domains, the required interaction among these entities scales up, amplifying
any availability issues.

Using ABE to mitigate availability and scalability issues. ABE provides a
practical and secure solution, and mitigates the potential availability and scalability
issues. Specifically, the KGA indirectly enforces access control by generating the
public and secret keys. Furthermore, the ciphertext-policy variant of ABE [BSW07]
allows the encrypting users to decide who is allowed access by specifying the access
policy. For instance, the patient in our example could encrypt her data under the
policy (“hospital” AND “doctor”) OR (“insurance company” AND “employee”) and
store the resulting ciphertext on the hospital server. Other users, e.g., the employee
in our example, can only successfully decrypt the ciphertext, if they have a set of
attributes that satisfies the access policy. In contrast to non-cryptographic access
control mechanisms, ABE only requires the enforcing entities, in this case the KGAs,
to be available when users request secret keys. A user is typically assumed to request
a secret key only once3: when the user enters the system (and potentially, when the
user obtains new attributes or loses them). From that point forward, the user can
access any data for which she is authorized while requiring no interaction with and
between any policy-enforcing entities (only the entities who store the data), effectively
mitigating any availability issues. In addition, the use of cryptography ensures that
the data can be stored anywhere, and thus can be shared across various domains.

3Note that, depending on how keys may expire or be revoked (Section 2.10.2), the user may need
to request keys more than once.
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Multi-authority ABE for multiple-domain settings. In the multiple-domain
setting, multi-authority (MA) ABE [Cha07] can be used. In this variant of ABE, the
role of the KGA is shared by multiple entities called KGAs or authorities. Each KGA
securely manages a unique set of attributes. Unfortunately, not all MA-ABE schemes
are “decentralized” enough. In particular, users need to interact (at some point) with
all KGAs associated with a policy. We illustrate the issue by considering an example
in more traditional access control mechanisms. For instance, consider an access policy
defined over attributes managed by several TTPs. Ideally, the access control decision,
i.e., the decision to grant or deny access, is made by verifying with only the relevant
TTPs whether the user satisfies the access policy. For example, during the access
request of the user in our previous example, the insurance company confirms the
employee status to the hospital server, which stores the data. It is then not needed
for the server to also check with the hospital whether the user is a doctor, as the
access policy is already satisfied. In contrast, most instantiations of MA-ABE require
the decrypting user to request keys from all KGAs associated with the access policy,
including those KGAs for which the user may not have any attributes. Hence, in the
example, the decision to grant access would need to be verified (although indirectly)
with both the insurance company and the hospital. Subsequently, the decrypting user
may need to interact with possibly many KGAs, which need to be online if the user
does not have any keys yet. This negatively impacts the scalability and availability
of the system.

Decentralized versus distributed access control decisions. To capture this dif-
ference in decision making in the multiple-domain setting—i.e., when multiple entities
are associated with a policy—we distinguish concretely between a decentralized and
a distributed access control decision. If the access control mechanism allows that the
decision to grant access is made by verifying with only the relevant TTPs whether the
requesting user satisfies the policy, then we call it decentralized. If all entities need to
be contacted—effectively distributing the decision—we call it distributed. Essentially,
this distinction between decentralized and distributed is determined by the level of
autonomy or independence of the entities. This distinction is roughly in line with the
terminology in (algorithmic) decision making in systems [MMM05, dLea10]. In those
works, decentralized systems do not require that the nodes have system-wide infor-
mation or need to communicate with all the nodes in the system to correctly make
decisions. The nodes in decentralized systems subsequently enjoy a level of autonomy
and independence in this process, which is in line with our definition of decentralized
access control decisions. In principle, distributed access control decisions can be seen
as the overarching term of any system that allows multiple TTPs to make a decision
[dLea10]. However, we shall use the term distributed to clearly distinguish distributed
but non-decentralized access control decisions from decentralized access control de-
cisions. In addition, for an MA-ABE scheme to be distributed or decentralized, we
require that the KGAs do not need to trust or rely on one another for confidentiality
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either. This is especially useful in settings in which some entities have conflicting
interests. For instance, consider adding another insurance company in our medical
scenario.

User independence and authority-dependence minimization. To express some
of the properties that we informally discussed, we formulate the following two implicit
properties that are generally important for practical access control mechanisms.

• User independence: authorized users can obtain access even if not all of the
authorities are available at the time of an access request.

• Authority-dependence minimization: authorized users only need to rely on
the authorities associated with their set of attributes. If it satisfies the access
policy, they can gain access without needing to interact with other authorities.
In addition, the authorities do not have to trust one another to correctly and
securely enforce access control.

In contrast to traditional RBAC and ABAC mechanisms, ABE provides a high level
of user independence by its functionality, because users can independently obtain
access by decrypting ciphertexts for which they are authorized once they have a
secret key, typically retrieved at an earlier point in time. Therefore, they do not
need to interact with any policy-enforcing entities, which may be unavailable at the
time of an access request. To maximize the level of user independence, we assume
that the user only needs to request a secret key once (or possibly once per some time
interval, to support revocation (Section 2.10.2)). In Section 2.9, we will put forth
the new notion of resilience in the context of ABE to foster such user independence.
We also show that some MA-ABE schemes satisfy our strong notion of authority-
dependence minimization. We call these schemes decentralized (MA-)ABE schemes.
In decentralized ABE, the users only need to interact with those authorities for which
they have attributes. In contrast, many MA-ABE schemes require the users have
received keys from all authorities associated with the access policy enforced on some
ciphertext they are trying to decrypt. If one of these authorities is permanently
unavailable, e.g., because an insurance company went bankrupt, the user is not able
to decrypt the ciphertext anymore despite possibly satisfying the policy. Decentralized
schemes do not have this issue, and are thus especially attractive for implementing
access control in the multiple-domain setting.

2.3 Attribute-based encryption – core properties

2.3.1 Attributes and access structures
First, we explain what attributes are, how they are represented, and how they are used
as a building block of access structures. An attribute is defined as a type-value pair,
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e.g., the type of the attribute could be “profession” and its value could be “doctor”
[HFK+19]. In the examples in this work, we often represent the attributes as strings
consisting only of the attribute value (if the type is clear from the context). However,
in practice, it is recommendable or even needed (Section 2.5.7) to include the attribute
type in the string to avoid confusion. For instance, “doctor” may also refer to a person
who holds a PhD in computer science, but in the context of a medical setting, it is
unlikely that this meaning is used.

Attributes are an important building block of access structures, or policies, which
specify which attributes need to be possessed by a user in order to be granted access
to a certain resource (in our case: data). Typically, access structures are expressed as
Boolean formulas (including threshold functions). For instance, the policy “doctor”
∧ “Radboudumc” specifies that access is granted to all doctors who work at the
Radboudumc. Access structures can be formally defined as follows.

Definition 2.1: Access structures [Bei96]

Let {att1, ..., attn} be a set of attributes. An access structure is a collection A
of non-empty subsets of {att1, ..., attn}. The sets in A are called the authorized
sets, and the sets that are not in A are called the unauthorized sets.

Note that any access policy expressed as a Boolean formula can also be expressed
as a set (like in the definition). For instance, consider the formula “(doctor ∨ nurse) ∧
Radboudumc”. The associated access structure A consists of all subsets of attributes
in the system that contain the sets {doctor,Radboudumc} or {nurse,Radboudumc}.

Two important aspects in access structures are the expressivity and the monotonic-
ity, which collectively determine the level of fine-grainedness of a scheme. Informally
speaking, expressivity concerns whether the use of all Boolean formulas consisting
of conjunctions, disjunctions and threshold functions [GPSW06a] is allowed. For
example, “doctor” AND “Radboudumc” is a conjunction, “doctor” OR “nurse” is a
disjunction, and “at least two of the five given genetic markers” is a threshold func-
tion. Furthermore, monotonicity concerns whether the use of negations, e.g., NOT
“doctor”, is allowed. Monotone access structures do not allow the use of negations in
the formula, while non-monotone access structures do allow it. In itself, monotonicity
can technically be characterized as an expressivity aspect. However, we treat it as a
separate feature, because negations are typically supported using different techniques
than the other expressivity features.

Definition 2.2: Monotone access structures [Bei96]

An access structure A ⊆ 2{att1,...,attn} is monotone, if for all B,C ⊆ {att1, ..., attn}
holds that if B ∈ A and B ⊆ C, then also C ∈ A.
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Existing schemes have varying levels of expressivity and monotonicity. The least
expressive policies are those that only support AND-gates (or: conjunctions) [CN07].
More expressive structures support a single threshold function, which consists of a
set of attributes and a threshold (smaller than the size of this set) to indicate the
minimal number of these attributes that needs to be in the user’s possession [SW05].
The most expressive access structures are (non-)monotone span programs ((N)MSP),
which support any formulas using conjunctions, disjunctions and threshold functions
[GPSW06a, BSW07]. Here, the distinction between monotone and non-monotone
span programs depends on the monotonicity of the access structures. Although most
existing schemes support monotone access structures, it is possible to support non-
monotone access structures, which we discuss in more detail in Section 2.5.7. To
implement access control on data in line with RBAC [SCFY96] or ABAC [HFK+19],
it is paramount that a scheme supports any Boolean formulas, including conjunctions,
disjunctions and negations. Furthermore, the support of negations readily allows for
the support of revocation (Section 2.10.2). It is therefore desirable that the scheme
supports negations.

However, depending on the practical setting and the type of attribute, non-
monotonicity may not be realistically achievable. In particular, for some attribute
types, it may be difficult to ascertain whether a user does not possess certain values,
especially when a user can possess multiple values. For instance, doctors may work
at multiple departments or be patients at the hospital where they work. For those
attribute types, it could therefore be recommendable not to use negations. To ensure
that negations are not used, the KGA could communicate on the application level
that those types should not be used by encrypting users.

2.3.2 Key-policy and ciphertext-policy ABE
In ABE, access structures—also known as policies—can be enforced either on the
secret keys or the ciphertexts. In key-policy attribute-based encryption (KP-ABE)
[GPSW06a], the access policies are enforced on the secret keys. These policies are
specified by the key generation authority (KGA), and subsequently embedded cryp-
tographically in the secret keys that are distributed to eligible users. The encrypting
user can in turn associate a set of attributes with the ciphertext. This ciphertext can
only be decrypted by users who have a secret key associated with an access policy
satisfied by the set. Conversely, in ciphertext-policy attribute-based encryption (CP-
ABE) [BSW07], the access policies are enforced on the ciphertexts. In particular, the
access policies are specified by the encrypting user. The KGA generates secret keys
associated with a set of attributes that the user possesses. Subsequently, a decrypt-
ing user can decrypt a ciphertext if she has a secret key that is associated with an
attribute set that satisfies the policy. We call such a key an authorized secret key.
Figure 2.2 illustrates the distinction between KP-ABE and CP-ABE with an example.

We formally define KP-ABE and CP-ABE by defining the notion of predicate
encryption [KSW08], which is a more general cryptographic primitive that includes



20 Chapter 2. Systematizing core properties of pairing-based ABE

(a) KP-ABE (b) CP-ABE

Figure 2.2. Key-policy versus ciphertext-policy ABE. In the examples, the access structure
is either associated with the keys (i.e., the persons holding a key) or the ciphertext (i.e., the
locked envelope). In each example, the person on the left is happy, because he can decrypt
the ciphertext, while the person on the right is sad, because he cannot.

KP-ABE and CP-ABE as special cases4. Specifically, it is defined for any predicate P ,
where P : X×Y → {0, 1} is a function that takes as input any pair (x, y) ∈ X×Y, and
outputs 1 exactly when the predicate is satisfied, i.e., P (x, y) = 1. For KP-ABE, X is
the collection of all attributes, and Y the collection of all policies, and P (x, y) = 1 if
and only if the set x satisfies the policy y. Conversely, for CP-ABE, X is the collection
of policies and Y the collection of attribute sets.

Definition 2.3: Predicate encryption (PE) [AC17b]

A predicate encryption scheme for a predicate P : X × Y → {0, 1}, with some
key generation authority (KGA), users and a universe† of attributes U consists
of four algorithms:

- Setup(λ) → (MPK,MSK): On input the security parameter λ, this ran-
domized algorithm, executed by the KGA, generates the domain parame-
ters, the master public key MPK and the master secret key MSK.

- KeyGen(MSK, y)→ SKy: On input the master secret key MSK and y ∈ Y,
this randomized algorithm, executed by the KGA, generates a secret key
SKy.

- Encrypt(MPK, x,M)→ CTx: On input the master public key MPK, some
x ∈ X and message M , this randomized algorithm, executed by the en-
crypting user, generates a ciphertext CTx.

4Our definition of predicate encryption is in line with [AC17b], which is more general than in
some other works [KW19a, Att19]. In those works, predicate encryption requires x to be hidden.
We will use the notion of attribute hiding (Section 2.10.3) to refer to this additional property.
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- Decrypt(MPK,SKy,CTx) → M : On input the master public key MPK,
the secret key SKy, and the ciphertext CTx, if P (x, y) = 1, then it returns
M . Otherwise, it returns an error message.

A scheme is called correct if decryption of a ciphertext with an authorized key
succeeds with overwhelmingly high probability. The scheme is called secure
if decryption of a ciphertext with any number of unauthorized keys fails with
overwhelmingly high probability. We discuss the notion of security in more detail
in Section 2.4.

†A universe of attributes is the set of all attributes used in the system (Section 2.3.3).

KP-ABE and CP-ABE allow for the implementation of different types of ac-
cess control. Roughly, one can determine which of the two is the most appropriate
choice as follows. If the particular practical setting requires that policies are enforced
based on the attributes associated with the data, then KP-ABE is probably the best
choice. If the setting requires that policies are enforced based on the attributes as-
sociated with the decrypting user, then CP-ABE is probably the best choice. More
specifically, KP-ABE can implement content-based access control using e.g., tags
[PTMW10, APG+11]. When the data are created and subsequently encrypted, it
may not be clear what the policies are going to be. However, it may be clear what
any tags may constitute, e.g., because they relate to the encrypted data rather than
who is authorized to access the data. For instance, in the medical setting, suitable
tag types may be the patient’s name, date of birth or social security number, and the
data type (e.g., results of blood tests or scans). When a doctor wants to access some
data, she can contact the hospital’s KGA. The KGA can first determine whether the
doctor is authorized to access these data. It can then generate a secret key for e.g.,
the policy “name: Alice” ∧ (“data type: scans” ∨ “data type: blood test”), so that the
doctor can access all test results and scans related to Alice. However, note that this
type of access control lets the KGA manage access to the data rather than the data
owner. It thus does not allow for the implementation of RBAC and ABAC, which
allows data owners to specify who gets access to the data, as required in settings as
described in Section 2.2. In contrast, CP-ABE allows for the implementation of more
fine-grained access control models such as ABAC. In the CP-ABE setting, the KGA
(which may be assigned by some health authorities) distributes the keys associated
with the attributes of the user. The encrypting user—which may be the data owner—
gets to specify the access policy, and is therefore in control of managing access. For
these reasons, we consider CP-ABE as the more favorable of the two, so we focus
almost solely on CP-ABE in the remainder of this thesis.

2.3.3 The universe of attributes
The set of attributes used in an ABE scheme is called the universe of attributes,
which can be small or large [SW05]. In the formal sense, these distinguish between



22 Chapter 2. Systematizing core properties of pairing-based ABE

whether the universe is polynomially bounded in the security parameter or not. In
small-universe constructions, the master public key—generated in the setup—depends
directly on the universe of attributes. Because the KGA needs to explicitly publish
a public key for each attribute, the master public key is consequently polynomially
bounded. In large-universe constructions, the master public key is independent of
the universe. Any user can uniquely generate the public key associated with some
attribute from the master public key and the attribute. Because the number of unique
public keys is exponential in the security parameter, the number of attributes in the
universe is essentially unbounded.

We consider large-universe constructions to be more practical than small-universe
constructions for several reasons. In contrast to small-universe constructions, large-
universe allow for the generation of public keys from any input strings. As such, the
authority does not need to keep a record of all attributes and their public keys (which
may be large!), which makes the system more scalable. In turn, users do not have to
locate these public keys before encryption. A secondary advantage of this is that this
may also be more privacy friendly. For instance, publishing identifiable information
such as names or social security numbers reveals that a person is part of a system.
Another secondary advantage is that encrypting users can use attributes for which
no keys exist yet without first asking the KGA to generate these [PP03], which gives
them more autonomy and therefore fosters availability. Finally, attributes can also
be added to the universe without any consequences with respect to the public keys
and previously generated keys and ciphertexts.

2.3.4 (Completely) unbounded ABE
Sometimes, schemes are bounded in one or more parameters. Indeed, we have already
considered the size of the universe, which can be small or large. In addition, schemes
can be bounded in the sizes of the sets of attributes or the access policies, and by
extension the sizes of the keys or ciphertexts. Furthermore, bounds can be placed
on the number of times that an attribute occurs in the policy, which we call bounded
re-use [LOS+10]. If an attribute may be used only once in each policy, we say that
the scheme suffers from a one-use restriction. Conversely, a scheme is multi-use if
attributes may appear any number of times in the policy.

If schemes are not bounded in any of these parameters, one might argue that they
are called unbounded. Remarkably, various works describe subtly different definitions
of the term “unbounded”. Notable examples include:

• LW11b [LW11b]: requires the scheme to support large universes, and to impose
no bounds on the attribute sets;

• AY15 [AY15], Att19 [Att19]: require the scheme to impose no bounds on the
attribute sets or access policies, including the number of uses of an attribute in
the policy. They call a scheme completely unbounded, if it also supports large
universes;
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• CGKW18 [CGKW18]: requires the scheme to impose no bounds on the sets or
policies.

We also observe that the term “unbounded” is usually only reserved for schemes
that avoid the random oracle model (Section 2.4.4). For instance, large-universe
schemes that use a full-domain hash (Section 2.5.5)—which additionally pose no re-
strictions on any of the discussed parameters—are not typically referred to as un-
bounded. Presumably, this is because the hash is modeled as a random oracle, which
can be regarded as a restriction as well. Therefore, rather than classifying a scheme
as unbounded or not, we will consider for each of the aforementioned parameters
whether it is unbounded.

Observation 2.1

In general, an obvious disadvantage of requiring bounds on any of these param-
eters is that it limits some or all parties in the system, for instance, because the
policy that they want to use for encryption is larger than the scheme allows.
However, there seems to be an additional, more subtle disadvantage in some
cases, which is not necessarily caused directly by imposing these bounds.

For instance, as we will show in Sections 2.5.5, 2.5.6 and 2.7.3, some meth-
ods used to achieve the large-universe property subsequently result in requiring
bounds on the policy (or set) associated with the ciphertext. In addition, these
methods also affect the efficiency of the scheme. Typically, the public keys
and encryption costs grow by a factor that is linear [Wat08] or even quadratic
[ALdP11] or cubic [AC16] in this bound. As such, the efficiency of the scheme is
directly dependent on the bound. Increasing the bound makes the scheme more
flexible, but less efficient, meaning that this bound cannot simply be chosen to
be sufficiently large.

As another example, we consider schemes with a bounded re-use of an at-
tribute in a policy. To mitigate the one-use restriction, some works [LOS+10,
LW11a] make multiple copies of each attribute. The idea is that, for each use
of the same attribute in the policy, another copy of the attribute is used. How-
ever, the number of copies is fixed after the setup is run, meaning that it is
bounded. Furthermore, the efficiency of the scheme depends directly on this
bound [AC17a]. In this case, the public keys and key generation costs grow by
a factor that is linear in the bound, and thus yield similar flexibility-efficiency
trade-offs as the previous example.
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2.4 Security of ABE

2.4.1 Collusion resistance
An important property of ABE is that it is required to be collusion resistant. If
any number of users are not individually able to decrypt a ciphertext, they should
not be able to decrypt collectively either. For example, a doctor who works at the
Amsterdam UMC and a nurse who works at the Radboudumc should not be able to
individually decrypt a ciphertext with policy “doctor” ∧ “Radboudumc’. They should
thus not be able to collude and decrypt the ciphertext together either.

Collusion resistance is important for attribute-based access control. In particular,
when such access control is enforced in practice, access should only be granted to au-
thorized users. In traditional systems, the authority ensures this by verifying whether
a requesting user possesses a set of attributes that satisfies the policy [HFK+19]. To
do this properly, the attributes need to be authenticated. This means that the au-
thority needs to be certain that the attributes are actually in the possession of a single
user (and not, say, in the possession of multiple colluding users). To enforce access
control with ABE, the employed scheme should ensure this as well, which is the case
when it is collusion resistant.

2.4.2 Security models
In the context of ABE, the security models capture security against chosen-plaintext
attacks (CPA) and collusion resistance (Section 2.4.1). The strongest notion of secu-
rity is provided by the full security [LOS+10] model, then the semi-adaptive security
[CW14b] model and then the selective security [SW05] model. Other models include
co-selective security [AL10] and static security [RW15], but these are used much less
often. The basic models consider security against chosen-plaintext attacks but can
easily be extended to model chosen-ciphertext attacks (Section 2.4.3). The full secu-
rity model is formally defined as follows.

Definition 2.4: Full security against chosen-plaintext attacks (CPA)

We define the security game between challenger and attacker as follows:

- Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK,
and sends the master public key MPK to the attacker.

- First query phase: The attacker queries secret keys for y ∈ Y, and
obtains SKy ← KeyGen(MSK, y) in response.

- Challenge phase: The attacker specifies some x∗ ∈ X such that for
all y in the first key query phase, we have P (x∗, y) = 0, and generates
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two messages M0 and M1 of equal length in Mλ, and sends these to the
challenger. The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ

under x∗, i.e., CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting
ciphertext CTx∗ to the attacker.

- Second query phase: This phase is identical to the first query phase,
with the additional restriction that the attacker can only query y ∈ Y such
that P (x∗, y) = 0.

- Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game.

In the selective security model, the attacker announces the challenge x∗ (in CP-
ABE: access structure) before the challenger runs the setup. In the semi-adaptive
security model, this happens afterwards, but before the attacker is allowed to query
secret keys. While selective and semi-adaptive security certainly prove a level of
security—or at least, they inspire some confidence that the scheme is secure—neither
does accurately model real-world dangers to security breaches [CKMS16]. It is un-
reasonable to assume that an attacker is going to announce which e.g., access policies
they are going to attack before a system setup.

A natural question would however be: are fully secure schemes truly more secure
than selectively secure schemes in practice? From a theoretical standpoint, this seems
to be true. Intuitively, one could provide a security reduction of a selectively secure
scheme in the full security model by protecting against every conceivable access policy,
resulting in an exponential security loss [SW05]. In fact, Lewko and Waters [LW14]
formally prove this by showing that any such black-box reduction leads to an expo-
nential security loss. Nevertheless, so far, no practical attacks exist that can break
any specific selectively secure scheme with a significant advantage over its fully secure
variant. As such, it is unclear whether selective security is simply an artifact of the
used proof technique, or whether these schemes are truly less secure in practice; and
if so, how much less. This gives rise to the following direction.

Direction 2.1: Selective versus full security in practice

To investigate the relationship between specific instantiations of selectively secure
ABE schemes and their fully secure counterparts with respect to their security
in practice.
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2.4.3 Security against chosen-ciphertext attacks
As noted, the basic security models only provide security against chosen-plaintext
attacks (CPA). However, in practice, a scheme often also has to be secure against
chosen-ciphertext attacks (CCA) [RS91]. The model in Definition 2.4 can easily be
adapted to model this, i.e., by including a decryption oracle. The attacker is allowed
to query this oracle with ciphertexts other than the challenge ciphertext. We give a
more formal definition of the CCA-security model in Definition 3.2.

2.4.4 The random oracle model
Some schemes are proven secure in the random oracle model (ROM) [BR93], i.e., their
security proofs use random oracles. In practice, the random oracles are replaced by
cryptographic hash functions [RS04], which are then assumed to behave randomly.
While this is an idealized functionality of a hash function, Bellare and Rogaway [BR93]
argue that it is sufficiently random for its purpose in most cases. However, Canetti,
Goldreich and Halevi [CGH04] show that schemes exist that are secure in the ROM,
but for which no implementation of a hash function exists that yields a secure scheme.
Although such insecure schemes differ substantially from real-world constructions
[LN09, KM15], it is unclear whether such problems may translate to any established
ABE schemes, and whether they can be exploited in practice (Direction 2.2).

2.4.5 Complexity assumptions and the generic group model
ABE schemes are typically proven secure by reducing a complexity assumption to
their security. Some proofs use static assumptions such as the decisional bilinear
Diffie-Hellman (DBDH) [SW05], the (symmetric) external Diffie-Hellman ((S)XDH)
[CW14a], decisional linear (DLIN) [AC17a] and subgroup assumptions [LOS+10].
Other proofs use parametrized or q-type assumptions, which grow linearly in some
parameter q (often dependent on some system parameters). Many of the q-type
assumptions used in these proofs can be generalized under the “uber-assumption”
[BBG05, Boy08], which is shown to generically hold in the generic bilinear group
model (GGM) [Sho97]. However, the security level of a scheme may decrease as q
increases [Che06], which makes them less attractive than static assumptions. An-
other difference between static and parametrized assumptions is the analysis of their
security. Static assumptions are usually concise, simple to understand and derived
from well-understood assumptions. In contrast, parametrized assumptions consist of
many inputs and are often tailored to prove security of one specific scheme. As such,
each assumption needs to be carefully studied.

Finally, some schemes directly prove security in the GGM [BSW07, ABGW17].
Much like the ROM, the GGM is considered an idealized security model and a proof
herein provides only a basic level of confidence. Dent [Den02] shows that schemes exist
that are provably secure in the GGM, but can be broken in practice. Regardless, much
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like in the ROM setting, it is unclear if this is also the case for ABE. In fact, Ambrona
et al. [ABGW17] show that a strong relationship exists between generic attacks and
the generic security of ABE schemes. (They additionally show that several selectively
secure schemes can be proven fully secure in the GGM, with only polynomial security
loss, which in part addresses Direction 2.1.) However, this does not include attacks
that are non-generic, e.g., that exploit the used hash function (in the ROM) or the
underlying group structure (in the GGM).

Direction 2.2: Security of ABE with proofs in idealized models in
practice

To analyze the security of ABE schemes that are provably secure in the random
oracle model or generic (bilinear) group model in real-world implementations,
e.g., with respect to their instantiated hash functions or underlying groups.

2.5 Pairing-based ABE
In this section, we review pairing-based ABE. To this end, we discuss the common
structure used in many schemes, and how some of the properties discussed in Sec-
tion 2.3 can be achieved.

In general, due to the collusion-resistance property (Section 2.4.1), ABE requires
security guarantees for both the secret keys and ciphertexts. This is unlike more
traditional forms of public-key encryption, such as ElGamal [Gam84], which typi-
cally only require security guarantees for the ciphertexts. To ensure security of such
encryption schemes, the ciphertexts are defined in groups in which the decisional
Diffie-Hellman problem [DH76, Bon98] is assumed to be hard. Roughly, it should
then (provably) hold that illegitimately decrypting the ciphertext is just as hard as
solving the discrete-log problem. To ensure that security guarantees can be achieved
for both the keys and ciphertexts, it makes sense to place both the keys and cipher-
texts in such groups, which may, however, complicate decryption. To overcome these
difficulties, pairings can be used.

2.5.1 Pairings
A pairing—also known as a bilinear map—is a map e : G × H → GT defined over
three groups G,H and GT of prime order p with generators g ∈ G, h ∈ H such that (i)
e(ga, hb) = e(g, h)ab for all a, b ∈ Zp (bilinearity), (ii) e(g, h) is not the identity in GT

(non-degeneracy) and (iii) e is efficiently computable. In some schemes, the order of
the groups is a composite of three distinct primes instead of a single prime. Because
the operations in such groups are one to two orders of magnitude less efficient than
in its prime-order counterparts [Gui13], prime-order groups are preferred.
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Depending on the relationship between G and H, different types of pairings exist.
If G = H, then the pairing is symmetric and called a type-I pairing. If not, then the
pairing is asymmetric. Subsequently, if an efficiently computable homomorphism from
H to G exists, then it is a type-II pairing, and otherwise, it is a type-III pairing. While
many schemes are designed in the type-I setting, type-III pairings should be used in
practice, due to computational efficiency [GPS08] and security issues in the type-I
setting [Gal14]. In general, schemes designed in the type-I setting can be securely
converted to the type-III setting [AGOT14, AGH15, AHO16a].

2.5.2 Representation of access structures
In pairing-based ABE, (non-)monotone span programs are typically represented by
access trees [GPSW06a] or linear secret sharing scheme (LSSS) matrices [GPSW06b].
Most often, LSSS matrices are used, which can be efficiently generated with the
methods described in e.g., [LW10a].

Definition 2.5: Access structures represented by LSSS matrices

An access structure can be represented as a pair A = (A, ρ), where A ∈ Zn1×n2
p

is an LSSS matrix with n1, n2 ∈ N, and ρ is a function that maps the rows of
A to attributes in the universe. Then, for some vector with randomly generated
entries v = (s, v2, ..., vn2

) ∈ Zn2
p , the i-th secret generated by this matrix is

λi = Aiv
⊺, where Ai denotes the i-th row of A. If S satisfies A, then a set of

rows Υ = {i ∈ {1, ..., n1} | ρ(i) ∈ S} and coefficients εi ∈ Zp for all i ∈ Υ exist
such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and by extension,

∑
i∈Υ εiλi = s holds. If S

does not satisfy A, there exists a w = (1, w2, ..., wn2
) ∈ Zn2

p such that Aiw
⊺ = 0

for all i ∈ Υ [Bei96].

Lewko and Waters have devised an algorithm that yields an efficient implementa-
tion of the decryption algorithm [LW10a]. First, we translate the access policy to an
access tree, such that the leaves correspond to the attributes and the nodes to OR
and AND-gates. We create the LSSS matrix recursively as follows:

• (Base case) Initialize the root node with vector x = (1) of length n2 = 1. Note
that n2 is a globally updated counter in the protocol.

• (Inductive step)

– OR-gate: propagate the node vector x to both children.

– AND-gate: split the node vector x into two vectors: (x∥0n2−|x|∥1) and
(0n2∥ − 1) with length n2 + 1, update n2 ← n2 + 1 and propagate the
vectors to the children.
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• (Final step, after all nodes have been propagated) For each leaf, set the vector
x inherited from the parent to (x∥0n2−|x|) if |x| < n2.

The output of this algorithm is an LSSS matrix A spanned by the rows in the
leaves. We show how the algorithm works with an example.

Example 2.1: Converting an access policy to LSSS matrix

Consider the policy (“doctor” OR “nurse”) AND “Radboudumc”. We first trans-
late it to an access tree:

AND

RadboudumcOR

nursedoctor

Then, we can use this access tree to construct the matrix as follows. We start
with the vector (1) in the root (which is an AND-gate in this case). Because the
node is an AND-gate, we split the vector into two new vectors of length 2, (1, 1)
and (0,−1), which are propagated to the children. On the left side of the tree,
the vector in the OR-gate then needs to be propagated to its children, which
inherit the same vector due to the OR-gate. This yields the following tree:

AND (1)

Radboudumc
(0,−1)

OR
(1, 1)

nurse
(1, 1)

doctor
(1, 1)

Using this tree, we finally obtain the access structure A = (A, ρ), where

A =

0 −1
1 1
1 1

 , ρ : {1, 2, 3} → {doctor,nurse,Radboudumc},



30 Chapter 2. Systematizing core properties of pairing-based ABE

with ρ(1) = Radboudumc, ρ(2) = doctor, ρ(3) = nurse.

2.5.3 Example: the Wat11 scheme
To illustrate what pairing-based ABE schemes look like, we give an example of a CP-
ABE scheme. Arguably the simplest CP-ABE scheme is the first Wat11 [Wat11]
scheme. It is the CP-ABE variant of the first expressive KP-ABE scheme, i.e.,
GPSW06 [GPSW06a]. The scheme is originally defined in the prime-order and sym-
metric setting (and only provides selective security (Section 2.4.2)). This scheme was
later improved on in many works [LOS+10, Att14a, Att16, AC17b, KW19b, Att19,
LL20a], attaining better security and/or practicality properties.

Construction 2.1: The Wat11 [Wat11] scheme

- Setup(λ): Let p,G,GT , e, g be generated as in Section 2.5.1, such that
e is a symmetric pairing and provides sufficient security with respect to
security parameter λ. The key generation authority (KGA) also initializes
universe U and randomly generates α, b, batt ∈R Zp for all att ∈ U . It
keeps MSK = (α, b, {batt}att∈U ) as the master secret key and publishes the
master public key

MPK = (p,U ,G,GT , e, g, A = e(g, g)α, B = gb, {Batt = gbatt}att∈U )

- KeyGen(MSK,S): For a user that possesses a set of attributes S, the KGA
randomly generates r ∈R Zp, and returns as secret key:

SKS = (S,K = gα−rb,K ′ = gr, {Katt = grbatt}att∈S).

- Encrypt(MPK,A,M): An encrypting user encrypts message M ∈ GT un-
der access policy A with A ∈ Zn1×n2

p , ρ : {1, ..., n1} → U . The user then
randomly generates integers s, s1, ..., sn1 , v2, ..., vn2 ∈R Zp and computes
the ciphertext as

CTA = (A, C = M ·As, C ′ = gs, {C1,j = BλjB
sj
ρ(j), C2,j = gsj}j∈{1,...,n1}),

such that λi denotes the i-th entry of A · (s, v2, ..., vn2
)⊺.

- Decrypt(SKS ,CTA): Suppose that set S satisfies policy A, and suppose
Υ = {j ∈ {1, ..., n1} | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with
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∑
i∈Υ εjAj = (1, 0, ..., 0). Then the plaintext M is retrieved by computing

C/

e(C ′,K) ·
∏
j∈Υ

(
e(C1,j ,K

′)/e(Kρ(j), C2,j)
)εj .

The scheme is correct, i.e., decryption indeed yields M :

M · e(g, g)αs/
(
e(gα−rb, gs) ·

∏
i∈Υ(e(g

r, BλiBsi
ρ(i))/e(g

rbρ(i) , gsi))εi
)

= M · e(g, g)αs/
(
e(gα−rb, gs) ·

∏
i∈Υ(e(g

r, gλib+sibρ(i))/e(grbρ(i) , gsi))εi
)

= M · e(g, g)αs/
(
e(g, g)αs−rsb · e(g, g)

∑
i∈Υ εirλib

)
= M · e(g, g)αs/

(
e(g, g)αs−rsb · e(g, g)rsb

)
= M.

We show how the scheme works with an example.

Example 2.2: Encrypting and decrypting with Wat11

Suppose that we want to encrypt our message M ∈ GT under the policy (“doctor”
OR “nurse”) AND “Radboudumc”. Then, we first represent the policy as an LSSS

matrix, i.e.,

0 −1
1 1
1 1

 (see Example 2.1). We generate s, s1, s2, s3, v2 ∈R Zp and

compute the shares

λ =

λ1

λ2

λ3

 = A · (s, v2)⊺ =

0 −1
1 1
1 1

( s
v2

)
=

 −v2s+ v2
s+ v2

 .

The ciphertext is then computed as

CTA = (A, C = M ·As, C ′ = gs, {C1,j = BλjB
sj
ρ(j), C2,j = gsj}j∈{1,2,3}).

Another user, who has secret keys for the attributes “nurse” and “Radboudumc”
can then decrypt the ciphertext as follows. The user matches the attributes cor-
responding to the first and third row of the policy matrix, i.e., Υ = {1, 3}. They
then try to find a linear combination of those rows such that (1, 0) can be re-
trieved, which is when the rows are simply added, i.e., ε1 = 1 and ε3 = 1. The
user then retrieves M by simply computing

C/

e(C ′,K) ·
∏

j∈{1,3}

(
e(C1,j ,K

′)/e(Kρ(j), C2,j)
) = M.
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2.5.4 Standard form
Many pairing-based schemes have a similar structure as the Wat11 scheme. In partic-
ular, the keys and ciphertexts mainly exist in G (and H)—with the exception of the
first ciphertext component, which is almost always C = M · e(g, g)αs—and decryp-
tion consists of pairing the appropriate key and ciphertext components. This common
structure is explicitly considered in frameworks that consider generic compilers (Sec-
tion 2.6.2), which abstracts the schemes by analyzing the “exponent space”. For in-
stance, the exponent space of the secret keys of the Wat11 scheme (Construction 2.1)
can be described as a vector of elements in Zp, i.e., skS = (k = α− rb, k′ = r, {katt =
rbatt}att∈S). In a more general sense, this vector skS can be expressed as a function
of the master-key α, some variables b associated with the public keys, and some vari-
ables r associated with the secret key. Similarly, such a vector can be defined for the
ciphertexts. We summarize these findings by defining the standard form of predicate
encryption (which covers both KP-ABE and CP-ABE (Definition 2.3)), which is de-
rived from the aforementioned generic-compiler frameworks [Wee14, Att14a]. In this
definition, we use the following shorthand for generators g and vectors b = (b1, ..., bn):
gb = (gb1 , ..., gbn).

Definition 2.6: Standard form of predicate encryption [Wee14, Att14a]

The standard form of predicate encryption is defined as follows:

- Setup(λ): Taking as input the security parameter λ, the KGA generates
three groups G,H,GT of order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G×H→ GT . The KGA also defines the universe of attributes
U , and generates random α, b1, ..., bn ∈R Zp, where n ∈ N is some inte-
ger. It outputs MSK = (α,b = (b1, ..., bn)) as its master secret key and
publishes the master public key as

MPK = (g, h, e(g, h)α, gb, hb).

We refer to b as the common variables, because they occur in both the
secret keys and ciphertexts. We refer to α as the master-key, as it can be
used to decrypt any ciphertext.

- KeyGen(MSK, y): The KGA generates a secret key for y by generating
user-specific random integers r = (r1, r2, ...) ∈R Zp and computing the
secret key as

SKy = (y, hk(α,r,b,y)),

where k denotes a vector defined over the user-specific random variables,
master secret keys and associated set of attributes.
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- Encrypt(MPK, x,M): An encrypting user encrypts the message M ∈ GT

for x by generating ciphertext-specific randoms s = (s, s1, s2, ...) ∈R Zp

and computing the ciphertext as

CTx = (x,M · e(g, h)αs, gc(s,b,x)),

where c denotes two vectors defined over the ciphertext-specific random
variables, master public keys and associated access structure.

- Decrypt(SK,CT): Let SK = (y,K = hk) be a secret key and CT = (x,C =
M · e(g, h)αs,C = gc) a ciphertext such that P (x, y) = 1. Define E(x, y)
as the matrix such that we have cEk⊺ = αs. Then, we retrieve plaintext
M by computing

C/

∏
i,j

e(Ci,Kj)
Ei,j

 ,

where C = (C1, C2, ...) and K = (K1,K2, ...).

Observation 2.2

As suggested by Attrapadung [Att14a], the standard form implies a metric that
can be used to measure the “similarity” between two schemes. For instance,
by analyzing the LOSTW10 [LOS+10] and Wat11 [Wat11] schemes, one would
conclude that these two schemes have similar structures. In fact, if one were
to abstract both schemes to the vectors b, k and c as in Definition 2.6, they
would turn out to be the same. The main difference between the two schemes is
the underlying group structure: whereas Wat11 is built on prime-order groups,
LOSTW10 is built on composite-order groups. As it turns out, many CP-ABE
schemes are structurally similar to the Wat11 scheme, and oftentimes only differ
in the underlying group structure [Att14a]. The reason for this is that the Wat11
scheme has an efficient “vector structure”—often referred to as pair encoding
(Chapter 4)—compared to other CP-ABE schemes, but it is provably secure in
a weaker model and under less established assumptions than would be desirable
(Section 2.4). In contrast, the derived schemes [LOS+10, Att14a, Att16, AC17b,
KW19b, Att19, LL20a] are provably secure in stronger models and under more
established assumptions, possibly at the cost of some basic functionality and,
importantly, the efficiency.

2.5.5 Supporting large universes
We analyze the methods that are used to support large universes. As argued in
Section 2.3.3, from a practical viewpoint, we prefer large-universe constructions over
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small-universe schemes. Although pairing-based small-universe schemes are simpler to
create, they can often be converted into the large-universe setting [Wat11, CGKW18].
This is because many such small-universe constructions use only the master public
key associated with an attribute in the key generation (and not some associated
secret key). For example, in the Wat11 scheme (Construction 2.1), the generator
Batt = gbatt is used in the key generation and encryption algorithms. Two techniques
exist that allow this generator gbatt to be generated by a function. First, a full-
domain hash (FDH) H : {0, 1}∗ → G can be employed that maps strings directly
into the group. This FDH is modeled as a random oracle [GPSW06a]. Second,
a collision-resistant hash function can be used to map strings to Zp, and then an
implicit n-degree polynomial is used to map the integer to the group [SW05]. For
instance, the KGA can generate an n-degree polynomial f(att) =

∑n
i=0 bix

i
att, include

“coefficients” gb0 , ..., gbn in the master public key, and define the map F as F (att) =∏n
i=0(g

bi)x
i
att = gf(att), where we assume that xatt is the hashed representation of att

in Zp. The latter is sometimes also called a “Boneh-Boyen” hash [BB04].
We give an overview of several advantages (+) and disadvantages (−) of the two

methods, and their relationship with other properties of ABE. For the “FDH-based”
method, we identify the following advantages and disadvantages:

+ It is simple to apply to many small-universe schemes, e.g., [PTMW10, Wat11];

+ It typically yields schemes that attain the same structure, and therefore, at first
glance, seem to attain the same efficiency as the small-universe counterpart.

− It may however negatively impact the efficiency of the key generation and en-
cryption algorithms compared to its small-universe variant (Chapter 6);

− Currently, no techniques exist that allow for the additional support of non-
monotonicity (Section 2.5.7);

− It cannot benefit from online/offline techniques like polynomial-based large-
universe constructions (Section 2.10.1), and therefore cannot significantly im-
prove the efficiency of the key generation and encryption algorithms in practice.

− Its security is proven in the random oracle model (Section 2.4.4).

For the “polynomial-based” method, we identify the following advantages and dis-
advantages:

+ Techniques exist that allow for the additional support of non-monotonicity (Sec-
tion 2.5.7);

+ The map is solely determined by group elements gbi , which may positively
influence the efficiency of the key generation and encryption (Chapter 6);
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+ The online/offline variants of these schemes (Section 2.10.1) allow for a split of
the computational costs into an online and offline phase. The online phase re-
quires almost no computational costs, which significantly improves the efficiency
of key generation and encryption in practice;

+ Its security does not rely on the random oracle model (Section 2.4.4).

− Achieving unboundedness is non-trivial (Section 2.5.6);

− Existing schemes typically incur a heavy trade-off in practicality and efficiency,
e.g., by being bounded [GPSW06a, Wat08] or by having decryption [LW11b,
RW13, CGKW18] or key generation [AHM+16] algorithms that are several fac-
tors more computationally costly than the other algorithms (Observation 2.1
and Section 2.7.3).

2.5.6 Achieving unboundedness
As we mentioned in Section 2.3.4, some schemes are bounded in one or more system
parameters, such as the attribute sets or policies, or the number of times that a
specific attribute may occur in the policy. The most notable reason why any of these
parameters may be bounded is related to the amount of randomness that is used in
the scheme. For instance, in the second Wat11 [Wat11, Wat08] scheme, the same
randomness is used for all attributes in the ciphertext. That is, the ciphertexts in
Construction 2.1 are replaced by ciphertexts of the form:

CTA = (A, C = M ·As, C ′ = gs, {C1,j = BλjBs
ρ(j)}j∈[1,n1]),

i.e., the Bρ(j) is also randomized with s instead of a fresh randomizer sj . As a result,
the number of times that the attribute ρ(j) can occur in the policy is restricted to
one. If it is used more than once, Bλj is not hidden anymore. Similarly, the sets
or policies may be bounded due to the use of insufficient randomness in the keys
or ciphertexts. For example, in [SW05, GPSW06a], the authors convert the small-
universe constructions into large-universe constructions by replacing the generator
Batt by an implicit n-degree polynomial. However, such a polynomial provides only
sufficient randomness for n attributes. Hence, intuitively, plugging it into e.g., the keys
in the Wat11 scheme in Construction 2.1, where each key component is randomized
with the same randomness r, places a bound5 on the size of the attribute set: n.

To remove those bounds, more randomness can be used. For example, to lift the
one-use restriction6, one could use a fresh randomizer for each attribute [Wat11] or

5Actually, the large-universe construction in Appendix B of the full version [Wat08] is bounded in
both the sets and policies, because it uses only one randomizer in the keys, and one in the ciphertexts.

6In some areas of ABE, this restriction is not as easily lifted as we suggest here. For example,
some proof techniques used in the dual system encryption paradigm (Section 2.6.2) require a one-use
restriction for a different reason. This restriction was lifted by Kowalczyk and Wee [KW19b] by
introducing novel proof techniques.
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for each re-use of one specific attribute [AC17b]. For polynomial-based large-universe
schemes, this is more difficult. Intuitively, the reason why this is difficult is in the
keys. In general, the keys are tied to one specific user by using the same randomness
(e.g., see the discussion in Section 2.8.4). For example, in Wat11, the same r is used
for all key components. Hence, replacing Batt with a polynomial-based hash F (att)
yields a bound on the attribute set associated with the keys, as F (att)r only provides
sufficient randomness for n attributes. Lewko and Waters [LW11b] and Rouselakis
and Waters [RW13] overcome this issue by adapting these schemes such that the keys
can be tied to one specific user while fresh randomness can be used for each attribute.
This subsequently complicates the proof techniques, and fixes the polynomial to the
case where the degree n = 1.

2.5.7 Supporting non-monotonicity
We analyze the existing methods used to support non-monotonicity. As mentioned,
schemes that support non-monotone access structures are more expressive. Moreover,
they may simplify the support of e.g., revocation [LSW10] (Section 2.10.2). In general,
we observe that two methods exist to support non-monotonicity in ABE. First, the
most straightforward way is to include a negative instance of each attribute in the
universe [CN07]. For example, the negative instance of the attribute “doctor” is
“non-doctor”. During the key generation, a partial secret key is generated for each
attribute in the universe: a positive instance for each attribute in the set, and a
negative instance for every other attribute in the universe. The advantage of this
method is that it can be applied to any small-universe scheme, and the efficiency of
the encryption and decryption algorithms are the same as in the monotone setting.
The disadvantage of this technique is that it inherently requires the support of small
universes only [Att19], and the key generation costs grow in the size of the universe.
Furthermore, supporting non-monotonicity in this way causes issues when attributes
are added to the universe, which we discuss in more detail in Section 2.9.

Ostrovsky et al. [OSW07] devised another method—hereinafter referred to as
OSW-method—which also supports large universes. In particular, their method ex-
ploits the structure of large-universe constructions that use the implicit n-degree
polynomial (Section 2.5.5), and can thus also be applied to completely unbounded
schemes [YAHK14, Att19]. Roughly, this method requires that, during decryption,
the entire set of attributes associated with the key is compared with the negated
attribute. The decrypting user only satisfies this negation, if all attributes are dif-
ferent from the negated attribute. On a more technical level, this is achieved via
the polynomial by exploiting Lagrange interpolation, also frequently used in secret
sharing [Sha79]. Intuitively, a partial decryption key is shared among the attributes
in the set associated with the key such that one more secret share is needed to recover
the decryption key. During decryption with a negated attribute, the decryption key
can only be reconstructed if the negated attribute is different from all attributes in
the set. The disadvantage of this method is, however, that this comes at the cost of
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some efficiency. For example, compared to RW13 [RW13], its non-monotone variant
in [YAHK14] has keys that are twice as large (and thus the key generation costs are
doubled). The decryption costs for negated attributes scale linearly in the size of the
set of attributes associated with the key.

In the realm of pairing-based ABE, a special subtype of non-monotonicity—
which we shall refer to as “labeled non-monotonicity”—was proposed by Okamoto
and Takashima [OT12], and was later further investigated and developed in [TKN20,
AT20]. These works explicitly use the attribute labels—corresponding to our notion
of attribute types (Section 2.3.1)—in access policies. For instance, the attribute “doc-
tor” can belong to the sub-universe labeled as “profession”. Then, the attribute can be
negated in two ways: “NOT profession: doctor” or “profession: NOT doctor”. In the
first case, a set of attributes satisfies the negation if it does not contain the attribute
“profession: doctor”. In the second case, a set satisfies the negation if it does contain
at least one attribute with the label profession, but not with the value “doctor”. In
particular, the negation is not satisfied if the set does not contain any attributes with
the label. We call the latter type of non-monotonicity “labeled non-monotonicity”.

Labeled non-monotonicity can be used to securely implement access control that
supports negations in dynamic practical settings [TKN20, AT20]. For instance, con-
sider a situation in which a new label, e.g., “profession”, is added to a system and used
in a negation during encryption. At this point, none of the users have an attribute
for this label yet; as such, each user would automatically satisfy the negation “NOT
profession: doctor”. In contrast, users do not automatically satisfy the negation “pro-
fession: NOT doctor”, as they need at least one attribute associated with the label
“profession”. To satisfy it, they would first need to request a new key for a set of
attributes that also includes the new label. (Note, however, that users may possibly
not possess any attributes associated with the label. In this case, such users could
be assigned an empty value, e.g., “profession: none”.) We show in Section 2.9.2 that,
compared to other techniques achieving non-monotonicity, techniques using labeled
non-monotonicity provide the best availability properties without compromising the
security of the schemes.

Observation 2.3

Currently, large-universe schemes that support non-monotone access structures
incur a significant efficiency trade-off. We identify two underlying reasons:

• Only the second non-monotonicity method, i.e., the OSW-method, can si-
multaneously support large-universeness and non-monotonicity. As such,
the resulting schemes suffer from the same decryption inefficiency as un-
bounded ABE using the polynomial method, as pointed out in Section 2.7.3;
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• The OSW-method requires that, during decryption, the entire set of at-
tributes is compared to the negated attribute, incurring computational
costs that are linear in the set.

To some extent, labeled non-monotonicity mitigates both these issues. Most
obviously, it mitigates the second issue by only requiring that a subset of at-
tributes associated with the same label as the negated attribute is compared. A
less obvious reason is that the attribute labels constitute another “layer” of the
universe of attributes [AT20]. For this layer, we do not require non-monotonicity,
so we can use both methods to support large-universeness as discussed in Sec-
tion 2.5.5. In this way, it may be possible to achieve a more desirable efficiency
trade-off. For instance, to optimize decryption, we can use an FDH rather than
a polynomial. Conversely, to optimize the key generation efficiency or to benefit
from online/offline extensions, we can use a polynomial.

For example, the TKN20 [TKN20] scheme supports labeled non-monotonicity
by using FDH-based and polynomial-based methods to support large universes.
Unlike FDH-based large-universe constructions, the scheme uses an FDH to map
the universe labels to the group. Within each labeled universe, it maps the at-
tributes to the group by using the polynomial method (Section 2.5.5). In this
way, the non-monotonicity supported with (a simplified version† of) the OSW-
method ensures that not the entire set of attributes needs to be compared to
the negated attribute during decryption. Rather, only the subset of attributes
associated with the negated attribute’s label needs to be compared. While this
yields a more efficient decryption algorithm compared to schemes that support
non-labeled non-monotonicity, the use of an FDH may decrease the efficiency of
the key generation and encryption algorithms (Chapter 6). On the other hand,
if we use the polynomial method to map the labels to the group, as is pro-
posed in [AT20], then decryption requires a linear number of pairing operations
per matching attribute. Possibly, a more balanced efficiency can be achieved if
Direction 2.6 is explored.

†In the case of TKN20 [TKN20], each attribute label may occur only once in the set of
attributes. Attrapadung and Tomida [AT20] later lift this restriction by applying the OSW-
method in the “attribute layer”.

2.6 Security of pairing-based ABE
We review some important techniques and developments in proving security of pairing-
based ABE.

2.6.1 Selective security: “program-and-cancel” proofs
In general, the choice of security model depends on the proof strategy. In many
early works [SW05, GPSW06a, Wat11], the “program-and-cancel” strategy is used to
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prove security. In this proof strategy, the challenge access structure is “programmed”
in the public keys. During the key query phase, for each set S, the set {1, ..., n1}
corresponding to the rows of the access structure is split into two subsets: the set
Υ of rows associated with the attributes that are in the set S associated with the
key, and its complement Υ. For each of the two subsets, a special property is used
to ensure that the key components that cannot be programmed are “canceled”. This
can only be done if the attacker commits to the challenge access structure before the
setup (or key query) phase is run. This strategy is therefore mostly used to prove
selective (or semi-adaptive) security. Another characteristic of selective security proofs
using the program-and-cancel technique is that, in the ciphertext-policy and prime-
order setting, the used complexity assumption is oftentimes q-type [Wat11, RW13].
Roughly, this is due to the way in which the policies are embedded in the public keys.

Selective proof techniques can also be utilized in full-security proofs [LW12]. In
fact, for some schemes, currently the only way to prove full security is to use selective
proof techniques [Att14a, AC17b]. As a consequence, these schemes have, at best, a
full security proof under a q-type assumption. We consider these proof techniques in
more detail in Chapter 4.

2.6.2 Full security through dual system encryption
Proving full security is difficult but important. As our taxonomy in Table 2.2 shows,
the minority of schemes are proven fully secure. This is, in part, because selective
security is arguably easier to prove, and typically yields more efficient schemes. An-
other reason why few schemes in our table are fully secure is that many generic
frameworks and transformations exist that do not necessarily aim to build one fully
secure ABE scheme—and are therefore not listed in our taxonomy—but generalize
existing structures and transformations to simultaneously achieve certain properties.
This simplifies the construction of fully secure ABE schemes with many desirable
properties while attaining strong security guarantees.

For the past decade, much progress has been made in achieving stronger security
guarantees for the existing selectively secure schemes. Currently, the most efficient
fully secure versions (e.g., [KW19b, LL20a]) of their selectively secure counterparts
(e.g., [GPSW06a, Wat11]) incur roughly twice as much storage and computational
cost. These works use and improve the dual system encryption methodology intro-
duced by Waters [Wat09]. Interestingly, a vast body of literature exists in this area,
e.g., [LOS+10, LW10b, OT10, Fre10, Lew12, CW13, CW14a, CGW15, CG17]. We
believe that, in itself, this subfield within pairing-based ABE can benefit from a sys-
tematized overview. To avoid heavy, technical explanations without entirely avoiding
these accomplishments, we merely mention some interesting recent results.

Generic compilers. To simplify the design and analysis of fully secure schemes,
generic frameworks are formulated within the dual system encryption framework,
which define generic transformations or compilers [Wee14, Att14a, CGW15, AC16,
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Att16, AC17b]. These compilers facilitate simplified security proofs by proving se-
curity of the underlying group structure generically. They ensure that the designer
only needs to prove simple notions of security (such as information-theoretic ones)
over the exponent space. Notably, [AC17b] (and by extension [ABGW17]) only re-
quires algebraic notions of security, which are derived from selective security proof
techniques. Effectively, they prove security generically for any scheme that is not
trivially broken. In particular, a scheme is trivially broken if an unauthorized key
exists that can decrypt a challenge ciphertext. As a consequence, many selectively
secure schemes can be transformed into fully secure schemes (albeit under a q-type
assumption). Note that many of these generic frameworks prove stronger notions of
security for previously constructed schemes, such as the Wat11 [Wat11] and RW13
[RW13] schemes.

Generic transformations, conversions and compositions. Not only the under-
lying group structures have been analyzed, but also the structural transformations
that are used to achieve certain properties. Several works are dedicated to con-
verting schemes with certain properties into schemes with other properties [AY15,
AHY15]. These works are built on the generic compiler frameworks of Attrapadung
[Att14a, Att16]. Other works show that certain transformations on the predicates,
e.g., conjunctions or negations, preserve security [Att19, AT20, Amb21]. In par-
ticular, [Att19, Amb21] are instantiated in the framework of Agrawal and Chase
[AC17b]. As a result, schemes satisfying properties such as complete unboundedness,
non-monotonicity and constant-size ciphertexts can be constructed, whilst attaining
strong security guarantees (e.g., full security under static assumptions in the standard
model [AT20, LL20b]). This flexibility in supporting such desirable properties gener-
ically is one of the reasons why a large part of this thesis builds on the framework of
Agrawal and Chase. We explain this in more detail in Chapter 4.

2.6.3 Conversion from CPA to CCA-security
Most ABE schemes are only proven CPA-secure, though there are some excep-
tions [CN07, YWRL10, OT10]. Oftentimes, generic conversion methods can be ap-
plied, such as methods using non-interactive zero-knowledge proofs [RS91], or key-
encapsulation techniques such as the Fujisaki-Okamoto transformation [FO99], which
both yield security in the random oracle model.

To avoid random oracles, some conversion methods exploit specific properties of
ABE. Yamada et al. [YAHK11] give two methods that use the Canetti-Halevi-Katz
transformation [CHK04] to generically obtain CCA-security. The first method con-
siders the delegatability of a scheme. A scheme is delegatable if a secret key associated
with a set of attributes can be transformed into a secret key associated with a smaller
set of attributes. The second method considers the verifiability of a scheme. A scheme
is verifiable if a user can verify for two sets of attributes whether their associated keys
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decrypt to the same value. For schemes that are not delegatable or verifiable, Kop-
pula and Waters [KW19a] describe a conversion method that can always be used.
For KP-ABE, the most efficient CCA-secure schemes (avoiding random oracles) can
be constructed from large-universe constructions with the delegatability method, in-
curring only a small constant overhead in all algorithms. However, for CP-ABE, all
conversion techniques incur a large overhead in at least one of the algorithms. In
general, the verifiability method roughly doubles the decryption costs, and the del-
egatability method for CP-ABE incurs a large constant overhead in all algorithms.
Therefore, we formalize the following future direction.

Direction 2.3: Efficient CCA-conversion for CP-ABE

To devise an efficient CCA-conversion for CP-ABE that incurs only a small
constant overhead in all algorithms.

2.7 Efficiency of pairing-based ABE
One of the most important practical aspects of any cryptographic primitive is the
efficiency. Compared to other primitives that are used to implement access control
(as discussed in Section 2.2), ABE generally requires more computational power on
the user side. To narrow the efficiency gap, it is paramount that the computational
costs of ABE are minimized. In this section, we critically review some aspects related
to efficiency of ABE. We also outline some directions related to making ABE more
efficient, and properly measuring and comparing efficiency.

2.7.1 The storage costs
In general, the efficiency of an ABE scheme is determined by the computational and
storage costs. For the storage costs, the sizes of the public and secret keys, as well
as the ciphertexts are considered. In practice, it may be more important to optimize
the size of the ciphertexts, rather than the keys. For instance, the secret keys are
stored on the decryption device, which may not need to be updated frequently after
key generation. In contrast, this device may frequently receive ciphertexts to decrypt
from other data sources. For mobile devices with limited data subscriptions, it might
be problematic to have large ciphertexts. For storage-constrained devices such as
sensors and other IoT devices that encrypt data using ABE, such ciphertexts may
simply be too large, yielding a problem on the encrypting user’s side. Therefore,
minimizing the ciphertext size may be desired or even required in these settings.

To support ABE on resource-constrained devices, schemes with constant-size or
short ciphertexts [HLR10, AC16, AC17b] can be deployed—possibly alongside another
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scheme that is more suitable for less constrained devices. As we will show in the taxon-
omy (Table 2.2), these schemes typically incur various trade-offs in flexibility (impos-
ing bounds on the universe, access policies or sets of attributes) or expressivity (only
supporting AND-gates or threshold functions). The only exception is the [AHM+16]
scheme, which is expressive, KP-based, achieves complete unboundedness, and has
short ciphertexts. The short ciphertexts come with a prominent trade-off: the key
size—and by extension the key generation costs—are larger by a factor that is linear
in one of the system parameters compared to other popular schemes [Wat11, RW13].
Hence, if the encryption device is powerful, it is more desirable to use one of those
popular schemes. In settings in which the encryption devices can be resource con-
strained or powerful, we recommend that both a scheme with short ciphertexts and
a scheme with more balanced sizes and computational costs are deployed. Because
CP-ABE with similar features as [AHM+16] does not exist yet, even though this may
be useful in practice, we formulate the following direction.

Direction 2.4: CP-ABE with short ciphertexts

To design an unbounded CP-ABE scheme with short ciphertexts that supports
expressive access policies.

2.7.2 Computational costs
For the computational costs, the performance of some or all of the algorithms—i.e., the
setup, key generation, encryption and decryption—is considered. In practice, some of
these algorithms may be performed more often than others. Key generation is ideally
run only once for each user, while encryption is performed much more often. In
turn, because multiple users can decrypt a ciphertext, decryption may be performed
more often than encryption. Furthermore, the encryption and decryption devices
may have different computational resources, e.g., the average encryption device may
be an IoT device while the average decryption device is a personal computer. It is
therefore important to take such practical considerations into account when analyzing
the efficiency of a scheme.

2.7.3 Theoretical performance considerations
Oftentimes, the computational efficiency of ABE is theoretically analyzed by counting
the operations required by the algorithms. In this way, we can gather rough estimates
on the efficiency of certain schemes without requiring any knowledge on cryptographic
engineering. Although this approach is simple and may already give a good view on
how certain schemes compare, they may fall short when the efficiency of the required
operations cannot be effectively estimated. As an example, we theoretically analyze
the efficiency of various large-universe schemes (Section 2.5.5), which can be divided
into two categories: schemes that support this via an FDH or a polynomial.
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For FDH-based large-universe schemes, we know that the schemes are relatively
close to their small-universe counterpart. Because the most efficient small-universe
constructions incur only a constant number of pairing operations during decryp-
tion [Wat11], their large-universe counterparts incur a similar decryption efficiency
[AC17a]. However, as we show in Chapter 6, the use of an FDH impedes the key gen-
eration and encryption efficiency of the scheme when it is implemented in practice.

For polynomial-based schemes, it is less clear what the most efficient construction
is. Some bounded schemes using an n-degree polynomial [Wat08] have an efficient
decryption algorithm, as they only require a constant number of pairing operations.
However, computing the polynomial-based hash requires n exponentiations. Because
encryption needs to evaluate the hash for each attribute, the encryption costs grow
linearly in not only the number of attributes, but also the degree of the hash. In
contrast, in most unbounded schemes [RW13, ABGW17] (which use a 1-degree poly-
nomial), the key generation, encryption and decryption costs grow only in the number
of attributes.

As an exception, the unbounded polynomial-based scheme by Attrapadung et al.
[AHM+16] provides a slightly different (but flexible!) efficiency trade-off. Essentially,
this scheme is the unbounded variant of the (bounded) constant-size scheme by At-
trapadung et al. [ALdP11], using techniques of Lewko and Waters [LW11b] to make
it unbounded. In this way, the scheme inherits the unbounded features of linear-sized
schemes such as [LW11b, RW13], while it can enjoy the potentially desirable efficiency
trade-offs provided by bounded schemes such as [ALdP11]. Importantly, it provides
this latter feature flexibly, allowing practitioners to choose the efficiency trade-offs.
While the key generation costs grow in the number of attributes and some chosen
parameter, the pairing operations required during decryption decrease by a factor in
this parameter compared to most unbounded schemes. Note, however, that the num-
ber of exponentiations required during decryption increases by this factor, as well as
the public and secret keys.

In summary, so far, all existing large-universe constructions incur a significant
efficiency trade-off. On the one hand, FDH-based schemes typically have less efficient
key generation and encryption algorithms, but more efficient decryption algorithms
[Wat11, AC17a, TKN20]. On the other hand, polynomial-based schemes may allow
for very efficient implementations of key generation and encryption, but have much
less efficient decryption algorithms [LW11b, RW13, ABGW17].

Observation 2.4

The polynomial-based method may have the potential to provide a more flexible
scheme in terms of efficiency, and perhaps even a generally more efficient scheme
in practice. However, to show that this is the case, more research needs to be
conducted in this area. First, it needs to be investigated whether a scheme can
be designed that combines the techniques of unbounded schemes such as [RW13]
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and compact† bounded schemes such as [Wat08]. Possibly, this can be achieved
with a similar approach as in [AHM+16], which combines the unbounded tech-
niques of [LW11b] and bounded techniques of [ALdP11]. Not only may this allow
for the design of schemes with a more flexible efficiency trade-off, but also for
the design of e.g., unbounded schemes with a balanced efficiency or with an effi-
cient decryption. Furthermore, it seems that the online/offline variants [HW14]
of unbounded schemes [LW11b, RW13] rather explicitly exploit the polynomial
structure, which can potentially be generalized. In this way, for all polynomial-
based large-universe constructions, the key generation and encryption algorithms
can be implemented efficiently, requiring almost no computational costs in the
online phase. As a more ambitious goal, combining these results—splitting an
unbounded scheme with an efficient decryption algorithm into an online and
offline phase—may lead to a generally very efficient scheme in practice.

†Typically, schemes are considered compact if the asymptotic sizes of the keys and cipher-
texts depend, in the worst case, linearly on the sizes of the sets or policies [KW19b], e.g.,
ciphertexts grow only in the policy length.

To this end, we formulate the following directions.

Direction 2.5: Compact unbounded ABE with flexible efficiency

To construct completely unbounded ABE using the polynomial method with
flexible efficiency trade-offs, such that the scheme is compact, i.e., its keys and
ciphertexts grow only in the set sizes or policy lengths.

Direction 2.6: Unbounded ABE with efficient decryption

To construct unbounded ABE using the polynomial method that minimizes the
required number of pairing operations per attribute in the decryption without
sacrificing the storage efficiency.

Direction 2.7: Generic online/offline conversions

To formulate a framework that provides generic conversions for any polynomial-
based large-universe scheme to the online/offline setting.

2.7.4 Accurately benchmarking efficiency of ABE
The most empirical way to evaluate and compare the computational efficiency is to
implement the scheme(s) and analyze the costs for various numbers of attributes.
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However, this effort is difficult, as many relevant aspects influence the scheme’s ef-
ficiency, and choices need to be made. To benchmark schemes more fairly, we have
introduced the ABE Squared framework [dlPVA22], which we treat in Chapter 6.

2.8 Multi-authority ABE
In some schemes, the role of the KGA is shared by multiple authorities, which is called
multi-authority ABE (MA-ABE) [Cha07]. Specifically, the setup and key generation
algorithms are performed (jointly or independently) by these authorities. In most
schemes, each authority is responsible for its own unique universe of attributes.

2.8.1 Security against corruption
The security models in the multi-authority setting often capture, in addition to CPA-
security and collusion (Section 2.4.2), the notion of corruption. Roughly, these models
require that security is preserved with respect to the honest authorities even if some
authorities are corrupted. This “additional” security guarantee is desirable or even
required in multiple-domain settings in which authorities do not (necessarily) trust
one another, like in the example in Section 2.2.

2.8.2 The goal of MA-ABE
In literature, there seems to be little consensus in what constitutes secure MA-ABE
and how independent the authorities must be. Furthermore, the reason that the role
of the KGA is shared by multiple authorities may differ. The security requirements
may therefore also differ. Some common security objectives are:

(i) To increase confidentiality: even if some authorities are corrupted, as long as
some are honest, the scheme is secure. In particular, the KGAs cannot individ-
ually decrypt any ciphertexts (by using their master-key) [LCH+11].

(ii) To mitigate availability issues: even if some authorities are unavailable, users
can still request keys for the desired set of attributes [LCLS08].

(iii) To increase independence of the (possibly mutually distrusting) authorities:
each domain can assign its own trusted authority without requiring to trust
the others; encrypting users can securely use attributes managed by one or
more authorities [LW11a].

We observe that these objectives determine the level of security of the scheme and
the interdependence of the authorities. For instance, if the objective of the designer is
to increase confidentiality (and therefore reduce the trust in the authorities), then the
authorities may be more dependent on one another in terms of availability [LCH+11].
Conversely, if the objective is to mitigate availability issues, then there may be less
security against corruption [LCLS08].
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2.8.3 Distributed and decentralized MA-ABE
We define the notions of distributed and decentralized ABE such that they address
the goals about increasing confidentiality and the independence of authorities. In
general, both distributed and decentralized ABE cover MA-ABE schemes that are
secure against corruption. This also means that the schemes should not be centralized
in terms of trust, i.e., corruption of one or more authorities should not result in the
breach of security towards the other authorities (conform Section 2.8.1). If the scheme
is not secure against corruption, the authorities are always and trivially dependent on
one another to act honestly, and by extension, the users need to trust all authorities.

Furthermore, we make a clear distinction between decentralized and distributed
ABE depending on how access control decisions are made. In particular, the distinc-
tion between the two is in whether the scheme supports (albeit indirectly) decentral-
ized access control decisions, as formulated in Section 2.2. In ABE, this means that,
for correctness, the decrypting user only needs to request keys for the attributes she
possesses and only from the authorities that manage these attributes. In sum, an MA-
ABE scheme is decentralized, if it supports decentralized access control decisions, is
secure against corruption and does not employ a centralized authority. Therefore, if an
MA-ABE scheme is decentralized, it satisfies the authority-dependence minimization
(ADM) property (Section 2.2).

Definition 2.7: Distributed and decentralized MA-ABE

Consider an MA-CP-ABE scheme that is secure against corruption, and that
does not have a fully trusted central authority. If it supports expressive access
policies (i.e., (N)MSPs) and decentralized access control decisions, it is decen-
tralized. Otherwise, it is distributed.

Specifically, the scheme supports decentralized access control decisions, if for
all access policies A and all sets of attributes S that satisfy A, such that

• CTA is an encryption of a plaintext M under policy A;

• SKS is a secret key associated with the set S, generated by only the asso-
ciated authorities,

decryption of ciphertext CTA with key SKS yields the original message M .

Partial and full decentralization. The interdependence of the authorities also
depends on the setup, in which the global parameters and master-keys are generated.
First, the setup includes the generation of one or more master-keys (from which the
users’ secret keys are derived), which can be generated either completely indepen-
dently or distributively. If the master-key is generated distributively, then the users
need to request keys from each authority, and therefore the scheme is automatically
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not decentralized. Second, the global parameters are generated in the setup. These
global parameters may be associated, albeit implicitly, with secret information on
which the (MA-)security of a scheme relies. Therefore, these parameters should not
be generated by a single authority if security against corruption is required. Examples
of such parameters are a composite-group order N [LW11a], or multiple generators
within the same group. Knowing the factorization of N or the relative discrete log-
arithm between two generators often enables attacks on the scheme. However, the
secrets associated with these parameters do not need to be kept after the global setup
has finished (unlike the master-keys). It might thus be acceptable that some initial
authorities jointly and distributively generate these parameters in a secured environ-
ment, and afterwards, the associated secret data are destroyed. It is then assumed
that these authorities cannot retrieve the secret data later. Because these parameters
cannot be generated independently, a scheme cannot be fully decentralized. As such,
we call a decentralized scheme that generates global parameters associated with secret
information partially decentralized, and otherwise, fully decentralized.

Decentralization to foster availability. Interestingly, decentralized ABE provides
some additional security with respect to the availability of the authorities. We already
covered the notion of corruption in the security model (Section 2.8.1), which ensures
that security in the form of confidentiality is still preserved with respect to the honest
authorities if some authorities are corrupted. In practice, such corruption may also
cause issues with respect to the availability of the authorities [MKE08]. If authorities
are suddenly unavailable, they cannot issue keys anymore, which may break the entire
system. That is, users entering the system after such corruption may not be able to
decrypt any old ciphertexts despite being authorized to do so. Because corruption
may be easier to instigate, e.g., through denial-of-service attacks, than the retrieval of
an authority’s secret keys, security against this type of attack is at least as relevant.
Similarly, the availability of authorities may depend on whether they want to leave
the system voluntarily, or alternatively, new authorities may want to join.

2.8.4 Achieving security against corruption
We briefly review the ways in which security against corruption is achieved in existing
schemes. As we have seen in the standard form (Definition 2.6), a scheme consists
of various variables that need to be secret. Notably, the master-key α can be used
to decrypt any ciphertext, and knowing some common variables b may also lead to
significant breaks (Chapter 5). Most schemes ensure security against corruption by
letting each authority hold its own (partial) master-key and its own common variables
b (whereas other schemes distribute the generation of these variables). Furthermore,
the user-specific random variables r introduced in the key generation link the keys
to one specific user. It is paramount that this randomness is unique to avert any
collusion attacks. In addition, a scheme oftentimes breaks if the randomness is known,
so it should not be retrievable by any attackers (which may be a corrupt authority).
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Hence, to ensure security against corruption, this randomness is either generated
distributively by all authorities [CC09] or provided by a full-domain hash [LW11a].

In general, achieving decentralized ABE is more difficult than achieving distributed
ABE. One of the difficulties is in making the scheme collusion resistant. In centralized
schemes, encryption uses only one master-key, while in distributed and decentralized
schemes, encryption may need to use master-keys managed by several authorities.
Roughly, the part that hides the message, i.e., e(g, h)αs, in Definition 2.6 is replaced
by e(g, h)αis, where αi is the master-key of the i-th authority. Then, colluding users
should not be able to jointly decrypt by individually computing these “randomized
master-keys”, therefore partially decrypting the ciphertext. Chase and Chow [Cha07,
CC09, Cho16] ensure this by generating the system-wide master-key distributively,
and they compute a user’s secret key by generating a different sharing of the master-
key for each user. As such, a decrypting user only obtains the randomized system-wide
master-key, i.e., e(g, h)αs =

∏
i e(g, h)

αis, if her own secret keys are used. However,
recall that distributing the master-key also ensures that the ADM property cannot
hold, because users trivially need to request keys from each authority.

To overcome this restriction, Lewko and Waters [LW11a] use a different method to
tie the partially decrypted ciphertexts to one user. Specifically, they include a zero-
sharing associated with the access policy in the ciphertext, which can only be canceled,
if it is combined with keys that use the same user randomness during decryption.
Because this user randomness needs to be the same for each authority and authorities
are not supposed to interact with one another, it is implicitly provided by a full-
domain hash. As a trade-off, these schemes [LW11a, RW15] typically have much larger
ciphertexts, because a linear number of elements exists in group GT . In addition,
arithmetic in group GT is less efficient, and the use of FDHs may further reduce the
efficiency of a scheme (Section 2.7). In contrast, schemes that distribute the master-
key like Chase and Chow [Cha07, CC09, Cho16] are structurally often closer to the
single-authority version of the scheme, and consequently retain a similar efficiency.
Importantly, because all decentralized schemes require a full-domain hash for its user-
specific randomness, they cannot benefit from an anonymous key issuance protocol
[CC09]. Removing the full-domain hash may mitigate or even solve some of these
issues. As such, we formulate the following directions.

Direction 2.8: Decentralized ABE conform the standard form

To devise decentralized ABE that is, in structure, closer to single-authority ABE,
i.e., conform the standard form (Definition 2.5.4), and thus attains a similar
efficiency.

Direction 2.9: Decentralized ABE without full-domain hash

To design a decentralized ABE scheme without requiring full-domain hashes.
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Table 2.1. Taxonomy of multi-autority ABE. We list whether the scheme is key-policy (KP)
or ciphertext-policy (CP) based, whether they support MSPs, whether they are proven to
be secure against corruption (MA-sec), whether the identity is embedded into the keys with
a full-domain hash (FDH) or not, whether the scheme is decentralized (Dec), and whether
it satisfies the ADM property. For the global parameters (GP), we consider whether the
scheme requires the generation of a composite order N or multiple generators (G).

Scheme KP/CP MSP MA-sec GP ADM Dec No FDH
[Cha07] KP ✓ ✓A G ✗ ✗ ✓
[CC09] KP ✓ ✓ - ✗ ✗ ✓

[LHC+11] KP ✗ ✓ - ✗ ✗ ✓
[LW11a, LW10a] I CP ✓ ✓ N ✓ ✗

[LW11a, LW10a] II CP ✓ ✓ - ✓ ✗
[LCH+11] CP ✓ ✓ N ✗ ✗ ✓
[OT13] CP ✓ ✓ G ✓ ✗

[RW15] CP ✓ ✓ - ✓ ✗
[MJ18] CP ✗ ✓ G ✗ ✗ ✗

✓A = only for the attribute authorities; = partially, = fully;
N = composite order; G = multiple generators

2.8.5 Taxonomy of MA-ABE schemes
Throughout this section, we have analyzed several MA-ABE schemes. We provide a
taxonomy for multi-authority ABE in which we evaluate the properties specific to the
multi-authority setting. Table 2.1 lists these results. Note that the table lists much
fewer properties than the taxonomy in Section 2.11. For an evaluation of the other
properties, we refer to Table 2.2 in Section 2.11.

Table 2.1 shows that only two fully and two partially decentralized schemes with
expressive access structures exist. They all employ full-domain hashes to generate
the secret randomness for each user. Nevertheless, these four (partially) decentralized
ABE schemes satisfy the user independence and authority-dependence minimization
properties, and therefore provide practical solutions to enforcing access control.

2.9 Towards (formalizing) resilient ABE
We discuss the resilience of ABE. Many works on ABE have considered the notion of
security in the form of confidentiality or integrity, covered by CPA- and CCA-security.
However, the notion of availability is also important in practice. We define the notions
of attribute resilience and attribute-wise key generation. These two properties capture
a level of resilience of a scheme such that availability issues can be mitigated by
minimizing the involvement of the authorities.
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2.9.1 Attribute resilience
In practice, the universe of attributes may not be static. For instance, as new users join
the system, new attributes (values) for e.g., names may have to be added [HFK+19,
ETS18a]. In this case, small-universe constructions require that a new public key is
generated for each new attribute. This may also impact the previously generated keys
and ciphertexts. For example, some schemes associate the keys and ciphertexts with
the whole universe, e.g., [CN07, NYO08]. Keys generated before the addition of an
attribute and its associated public key may not be able to decrypt a newly encrypted
message despite its authorized status. As such, all keys and ciphertexts need to be
updated to make the system functional again. Large-universe constructions do not
have this problem, because the public keys can be generated from any attribute string,
and keys and ciphertexts are therefore never associated with the whole universe.

More generally, we propose the notion of attribute resilience, which protects against
such problems. It captures the correctness and security of a scheme with respect to
the universe of attributes at any given time. That is, at a certain time, the universe
of attributes may be larger than at an earlier point in time. In many settings, it is
reasonable to require that e.g., ciphertexts encrypted at the earlier point in time are
decryptable by a key generated at a later point, provided that it is authorized to do
so. However, certain types of schemes are by definition not resilient, and can therefore
not be efficiently used in such dynamic settings.

The definition of attribute resilience can be expressed as an extra condition on
the correctness and security of the scheme. On the one hand, a ciphertext should be
decryptable by an authorized key, regardless of the associated universes of attributes
at the time of generation. On the other hand, a ciphertext should never be decrypt-
able by an unauthorized key either. Such an additional requirement on the definition,
however, requires that the formal definition and security model of the scheme need
to be adjusted, e.g., because the universe needs to be taken as input to the algo-
rithms. We formalize attribute resilience and its associated security definition in the
full version of the paper on which this chapter is based [VAH21].

2.9.2 On the resilience of ABE supporting non-monotonicity
We observe that ABE that supports non-monotonicity has issues with regard to the
attribute resilience. To show this, we discuss the non-resilience that follows from
applying the three methods described in Section 2.5.7.

The first method: negative attributes. Schemes supporting non-monotonicity
using the first method (Section 2.5.7)—i.e., using negative instances of attributes
to implement negations—are rendered incorrect when attributes are added. Suppose
that U and U ′ are the universes associated with some key and ciphertext, respectively.
Let the access policy of the ciphertext be such that it requires the possession of a
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negative attribute in U ′ \ U . Then, the key cannot decrypt the ciphertext, despite
possibly not having the attribute and thus satisfying the policy.

The second method: OSW-method. Schemes supporting non-monotonicity us-
ing the second method, i.e., the OSW-method, as considered in Section 2.5.7 are
rendered insecure when attributes are added. The reason for this is that the OSW-
method is combined with the polynomial-based method to support large universes
(Section 2.5.5). On the one hand, this allows users to use any conceivable input
string as attribute. On the other hand, this lack of control over the universe may
yield insecurity in the non-monotonic setting. As we previously discussed, the nega-
tions used in the OSW-method require the decrypting user to compare the entire set
of attributes associated with the key with the negated attribute. However, depending
on how the scheme is implemented in practice, the decrypting user could possess the
negated attribute, despite not having the associated key. For example, the KGA may
not be able to check whether the user has revealed all relevant attributes in their
possession, or a new label is added after the secret keys are generated (as mentioned
in Section 2.5.7). It is therefore possible that a decrypting user can decrypt a cipher-
text despite not being authorized to do so, and the scheme is consequently insecure.
(Note that this issue was also pointed out by Attrapadung and Tomida [AT20], who
introduced the notion of labeled non-monotonicity to mitigate such issues.)

The third method: labeled non-monotonicity. Schemes supporting a labeled
non-monotonicity with the third method (Section 2.5.7) may provide a more accept-
able trade-off in (non-)resilience. As discussed, it is useful that ciphertexts for which
the access policy specifies a negation for a label, for which the decrypting user does
not have a key yet, cannot be decrypted. This ensures that the owner of the key
cannot unjustifiably decrypt a ciphertext despite possessing the negated attribute
(value) but not possessing the associated key. In this case, it is reasonable to say that
the incorrectness that follows from this lack of attribute(-label) resilience trumps the
insecurity that might have otherwise followed. The lack of resilience with respect
to the correctness is less disruptive in the third method than in the first method.
Whereas this non-resilience can occur at any addition of an attribute (value) in the
first method, this only happens when an attribute label is added in the third method.

2.9.3 Attribute-wise key generation
To minimize the required computational power of the KGA, we introduce the no-
tion of attribute-wise key generation. An additional benefit of decentralized CP-ABE
[LW11a, RW15] is that the user’s secret keys can be generated incrementally, i.e., one
partial secret key for each attribute. In contrast, existing single-authority schemes re-
quire users to request secret keys for the entire set of attributes they possess. The keys
are mathematically linked to a single user by using the same user-specific randomness



52 Chapter 2. Systematizing core properties of pairing-based ABE

for each attribute such that users cannot collude. In most decentralized schemes, this
randomness is provided by a full-domain hash, which deterministically and implicitly
generates randomness for any given identity. It therefore allows the KGA to link the
new “attribute keys” incrementally to the identity instead of all at once.

In general, the advantage of such an “attribute-wise key generation” is that it is
more efficient and practical. Especially in dynamic settings, in which new attribute
values, labels or types may be frequently added, attribute-wise key generation may
be more efficient. For instance, suppose a recently added attribute (label or value)
is used in a ciphertext access policy, and a decrypting user possesses the attribute
but not the associated secret key. Then, a partial secret key can be requested for the
new attribute (value) only. This reduces computational costs for the key generation
authority significantly. By extension, key requests can be handled more quickly, and
thus more key requests can be processed, which fosters availability.

The construction of a scheme with an attribute-wise key generation is an open
problem. Some CP-ABE schemes seem to have a structure that allows for the con-
struction of such an attribute-wise key generation by using an FDH like in the de-
centralized setting. However, the main difficulty in constructing such a scheme lies
in the security proof. The existing security models consider key queries for sets of
attributes (which are thus specified before the key is generated). In contrast, the
security model associated with a scheme that supports attribute-wise key generation
would have to take into account that keys can be queried gradually for any user
and attribute. For instance, selective security proofs (e.g., [Wat11, RW13]) embed
the entire set of attributes in all key components, so it is unlikely that these proofs
carry over to any such new security model without some adjustments. To solve this,
Rouselakis and Waters [RW15] use a static security model. In this model, the sets
of attributes for which the attacker is going to query keys are determined during the
initialization phase (Definition 2.4). It is unclear, however, if such a scheme can be
designed without resorting to weaker models.

Direction 2.10: Attribute-wise key generation

To construct a scheme with attribute-wise key generation (that is secure in a
non-static model).

Observation 2.5: Non-monotonicity and attribute-wise key generation

For some methods that are used to support non-monotonicity, attribute-wise key
generation is impossible. Intuitively, this follows from the converse of the defini-
tion of monotonicity (Definition 2.2). If an access structure A is not monotone,
then B,C exist such that B ∈ A and B ⊆ C, but not C ∈ A. Suppose now that
A is used during encryption. Then, some user, who possesses a set of attributes
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C, but only has secret keys for the subset B (because she has not requested keys
for the rest of the attributes C \B yet), can decrypt the ciphertext even though
she does not satisfy the policy.

Fortunately, not all three methods discussed in Section 2.5.7 satisfy this def-
inition of non-monotonicity, and seem to be able to support attribute-wise key
generation in some cases. The first method essentially uses monotone structures
by pushing the negation to the value, e.g., “profession: non-doctor” instead of
“NOT profession: doctor”. The second method, on the other hand, does satisfy
this definition of non-monotonicity. We also observe that all schemes that use the
OSW-method tie all “attribute keys” together to one specific user by distributing
the user randomness in a certain way. The KGA can therefore not generate these
keys independently of the rest of the attribute keys, and we can thus not define
an attribute-wise key generation for these schemes. Because the third method
uses a labeled non-monotonicity, e.g., “profession: NOT doctor”, it is possible to
incrementally generate keys for the labels, but not for the attributes values with
the same label. This is however only secure, if the KGA can check whether the
user requests keys for all values that she possesses for the label for which she
requests keys.

2.10 Additional functionality
Some schemes that we have analyzed support additional functionality, achieving more
properties than we have discussed so far. These properties may enhance ABE in
certain aspects, which may make them more practical. Since the focus of this chapter
is on the core properties of ABE, we introduce some of these properties only briefly.

2.10.1 Online/offline key generation and encryption
Unbounded ABE schemes [LW11b, RW13] based on the polynomial method discussed
in Section 2.5.5 can be implemented more efficiently. The key generation and encryp-
tion algorithms can be efficiently split into an online and offline phase [HW14], such
that the offline phase covers most of the computational costs, while the online phase
requires minimal computations. (In contrast, key generation and encryption of FDH-
based large-universe schemes could also be split into two phases, but would always
require a linear number of exponentiations during online time.) The key generation
efficiency is enhanced, because the KGA can securely precompute large batches of
secret key material, and needs to perform only few computations in a key request.
As a small trade-off, the user needs to put in more computational effort. The en-
cryption efficiency is similarly enhanced, but at the cost of a diminished decryption
efficiency. Furthermore, the ciphertexts increase significantly in size. Nevertheless,
this implementation of encryption is especially useful for e.g., devices with limited
power resources.
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2.10.2 Revocation
In access control systems, the access privileges of users may be revoked, e.g., be-
cause their credentials have been stolen or have expired. A user’s secret keys then
need to be disabled such that she cannot decrypt any ciphertexts for which she has
lost authorization. For ABE, revocation is significantly more troublesome, because—
unlike in traditional public-key encryption—several distinct users might hold secret
keys associated with the same attributes [PTMW10]. Many works have addressed
revocation by means of different approaches, which can be classified in two cate-
gories: user-based [AI09b, IPN+09, YWRL10, LSW10, Cho16, CDLQ16] and time-
based [AI09a, SSW12, LYZL18]. Some of these works describe generic approaches
to supporting revocation [Cho16, SSW12]. Because of the importance of revocation
in practice and the vast body of (non-generic) work in this subfield of ABE, we rec-
ommend that any such approaches are systematized and generalized. Then, these
methods can be applied to any scheme, generically, rather than to a single scheme.

Direction 2.11: Systematizing and generalizing revocation methods

To systematize and generalize revocation methods such that they can be applied
generically to many or even all ABE schemes.

2.10.3 Hidden policies – attribute-hiding ABE
Some schemes are designed such that the access policies can be securely hidden, which
is called attribute-hiding ABE [BW07, KSW08, NYO08, OT10, Wee17]. Because
the predicate (e.g., access policy) associated with a ciphertext may leak information
about the sender or receiver, this makes ABE more privacy friendly. Interestingly, the
generic framework by Chen, Gay and Wee (CGW15) [CGW15] provides a modular
approach to achieving a weaker notion of attribute-hiding called weakly attribute-
hiding. In this notion of attribute-hiding, the decrypting user is only unable to learn
anything about the access policy, if the policy is not satisfied by the set of attributes.
In contrast, in fully attribute-hiding schemes, the decrypting does not learn anything
about the access policy except whether the set of attributes satisfies it, even if the
set does satisfy the policy. Regardless, so far, no attribute-hiding ABE schemes
have been proposed that support large universes and are expressive. Presumably, the
reason for this is that the expressivity and the (weakly) attribute-hiding properties
are seemingly incompatible. To decrypt, the user needs to know how to recover the
row (1, 0, ..., 0) from the rows of the policy matrix (Definition 2.5), which can only
be done efficiently if the rows are known. Furthermore, because many expressive
schemes have ciphertexts that are linear in the size of the policy, the size of the policy
is not hidden either. As a “best-of-both-worlds” solution, Wee [Wee17] proposes the
notion of partially-hiding. This notion applies to a special family of predicates that
are composed of two single-input predicates. For example, the first input predicate
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could be for MSPs and the second for single identities. The partially-hiding property
only requires the second input predicate to be hidden, and not the first. Possibly, this
approach can be used to construct an ABE scheme for MSPs where the attributes
are split into a public part—e.g., the attribute type—and a hidden part—e.g., the
attribute value. To devise such a scheme, we formulate the following future direction.

Direction 2.12: Partially-hiding ABE for MSPs

To devise a partially-hiding ABE for MSPs, and to investigate whether they can
support practical properties such as large-universeness and non-monotonicity.

2.10.4 Outsourced decryption
To mitigate the decryption costs on the user side, decryption can be securely out-
sourced to a third party with better computational resources [GHW11]. The ap-
proach was later generalized in [Cho16], and may thus be applicable to various ex-
isting schemes. This property can also be combined with server-aided revocation
techniques [CDLQ16]. While outsourced decryption may solve some issues with the
decryption efficiency in practice, we believe that this particular property may some-
what undermine the user independence property—which mitigates availability issues
in access control systems—and is one of the main advantages of ABE. As such, it
should be carefully considered whether the entity assigned for outsourced decryption
is sufficiently reliable in terms of availability.

2.10.5 Traceability
In some settings, users may attempt to share their access privileges with other users
(e.g., for financial gain). This can be mitigated with traitor-tracing schemes [LHC+11],
and allows the authorities to trace these malicious users. Notably, Lai and Tang [LT18]
devised a practical generic approach that can be applied to any existing scheme.

2.11 Taxonomy: classifying existing schemes
Throughout this work, we have analyzed over fifty ABE schemes with respect to the
described properties. These schemes and our analysis are summarized in Table 2.2.
Each property that we have discussed in Sections 2.3-2.8 and 2.10 is considered in the
table. We illustrate the significance of each scheme by highlighting the satisfied prop-
erties in green. Note that the table does not include schemes that can be instantiated
in the works mentioned in Section 2.6.2, as the underlying choices influence several
properties, such as the group order and the level of security.
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Table 2.2. Taxonomy: classification of existing schemes
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Core properties
KP = key-policy, CP = ciphertext-policy, KP* = KP implemented as CP, Expr. = expressivity,
LU = large-universe, L-F = extendable to LU with FDH (only listed if not already supported),

T = threshold function; (NM-)BF = (non-monotone) Boolean formulas;
(N)MSP = (non-)monotone span program; OU = one-use, A = policy, S = attribute set

Efficiency
PO = prime-order group; CS-CT = constant-size ciphertext

Security
CCA∗ = security against CCA from using verifiability (V) and delegatability (D);

SA = security assumption, ROM = random oracle model, GGM = generic group model;
q(par) = q-type assumption depends on par;

= full, = semi-adaptive, = selective, = static security;

Additional functionality
MA = multi-authority ABE, AH = attribute-hiding, OD = outsourced decryption,

T = traceability, R = revocation, OO = online/offline, = decentralized, = distributed
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2.12 Future work and conclusion
We showed that over the past two decades, much progress has been made in the
context of pairing-based ABE. Especially with respect to security, a wide variety of
techniques and frameworks has been developed to construct ABE with the required
security guarantees. Selectively secure schemes can now be converted into fully secure
schemes, incurring relatively little sacrifice in efficiency. Furthermore, such security
guarantees can be achieved whilst retaining or achieving all desirable core properties.
From a practical viewpoint, we are therefore optimistic that the existing techniques
and frameworks are sufficient in the design of future schemes. However, we may need
to settle for full security under parametrized assumptions rather than static ones.

Nevertheless, it seems that the focus on improvements in security has resulted in
a declined interest in improving the general efficiency and other practical aspects of
ABE within the theoretical community. As we have shown, achieving some desir-
able properties simultaneously may result in the inability to support other properties.
For instance, the simultaneous support of large universes and non-monotone access
structures negatively affects the resilience and efficiency of a scheme. To shift the
attention to the practical issues outlined in this chapter, we have proposed several
directions for future research that we encourage the community to address. In addi-
tion, we encourage the practical community to seriously consider ABE in the design
of cryptographically-enforced access control. At this point, ABE is already at a rea-
sonably advanced stage and may be beneficial in settings for which no practical and
secure alternatives exist.

In particular, we motivated that ABE provides a practical and secure solution
to enforcing access control. We explained the problem through a simple use case of
an EHR system in the multiple-domain setting. In Section 2.2, we identified two
properties to increase availability and scalability: user independence and authority-
dependence minimization. These properties minimize the role of the authorities in the
enforcement of access control. In general, ABE provides user independence. After the
users have received secret keys from the authority, they can decrypt any ciphertexts
for which they are authorized without requiring interaction with the authority again.
The authority-dependence minimization property is relevant in the multi-authority
setting and minimizes the number of authorities with which the user has to interact.
In particular, this property ensures that decrypting users do not have to interact
with authorities for which they have no relevant attributes. We defined the notion of
decentralized ABE such that decentralized schemes satisfy the ADM property. Be-
cause decentralized ABE additionally provides security against corruption, it ensures
that access control can be securely enforced by various (possibly mutually distrust-
ing) authorities. This makes decentralized ABE especially attractive as a solution
in multiple-domain settings. We showed that several schemes are decentralized, but
that these can benefit from improvements.

We posed directions for future research (Section 2.12.1) to mitigate the disadvan-
tages of ABE while maintaining and even amplifying its benefits. Currently, the main
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disadvantage of ABE is the general inefficiency compared to other cryptographic prim-
itives. In contrast, other primitives such as traditional public-key encryption, proxy
re-encryption [BBS98] and identity-based proxy re-encryption [GA07] are more ef-
ficient on the user side. For this reason, many of our directions for future research
address the efficiency of ABE. Furthermore, the other directions address features that
ABE provides or can potentially provide that other solutions may not be able to suffi-
ciently address. By exploring these directions, ABE becomes even more practical and
secure, reaching its full potential as a mechanism to implement efficient and secure
access control in practice.

2.12.1 Future directions addressed in this thesis
In this thesis, we address the following future directions:

• Direction 2.3: Efficient CCA-conversion for CP-ABE

• Direction 2.4: CP-ABE with short ciphertexts

• Direction 2.5: Compact unbounded ABE with flexible efficiency

• Direction 2.6: Unbounded ABE with efficient decryption

• Direction 2.7: Generic online/offline conversions

• Direction 2.8: Decentralized ABE conform the standard form

• Direction 2.10: Attribute-wise key generation

• Direction 2.11: Systematizing and generalizing revocation methods

• Direction 2.12: Partially-hiding ABE for MSPs

In particular,

• Chapter 4 addresses, to some extent, Directions 2.8, 2.10 and 2.11;

• Chapter 7 addresses Directions 2.5 and 2.6, and to some extent, Direction 2.7;

• Chapter 8 addresses Direction 2.4;

• Chapter 9 addresses Direction 2.3.
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Chapter 3

Theoretical background

In this chapter, we give further theoretical background needed in the remain-
der of this thesis. In particular, it contains notations, formal definitions and
otherwise important results such as lemmas and theorems.

3.1 Notation
We use λ to denote the security parameter. A negligible function parametrized by λ
is denoted as negl(λ). If an element x is chosen uniformly at random from a finite set
S, then we denote this as x ∈R S. If an element x is produced by running algorithm
Alg, then we denote this as x ← Alg. If a set of attributes S satisfies some access
structure A, we denote this as A |= S. If not, then we denote this as A ̸|= S. We
use Zp := Z/pZ for the ring of integers modulo p. For integers a < b, we denote
[a, b] = {a, a + 1, ..., b − 1, b}, [b] = [1, b] and [b] = [0, b]. We use boldfaced variables
M and v for matrices and vectors, respectively, where (M)i,j denotes the entry of M
in the i-th row and j-th column, and (v)i denotes the i-th entry of v. We use the
following shorthand notation for vectors in the exponent: gv = (g(v)1 , g(v)2 , ...). If
v is a vector whose entries are polynomial functions over variables x = (x1, ...), we
sometimes write v(x) to indicate this. For access policies A = (A, ρ), we denote the
entries as Aj,k (for all j ∈ [n1], k ∈ [n2]). We denote a : A to substitute variable
a by a matrix A. We define 1d1×d2

i,j ∈ Zd1×d2
p as the matrix with 1 in the i-th row

and j-th column, and 0 everywhere else, and similarly 1d1
i ∈ Zd1

p and 1
d2

i ∈ Zd2
p

as the row and column vectors with 1 in the i-th entry and 0 everywhere else. If
some algorithm yields no output or outputs an error message, then we use ⊥ to
indicate this. We use a∥b to indicate that two strings a and b are concatenated.
Sometimes, we use the implicit representation used for group elements in [EHK+13].
This representation is quite often used in ABE literature to simplify the description
of schemes [CGW15, CGKW18, KW19b, TKN20]. In particular, suppose g′ ∈ G′ is
a generator of some group G′, then we use [x]G′ to denote the element g′x.
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3.2 Pairings (or bilinear maps)
Following Section 2.5.1, we define pairings as follows.

Definition 3.1: Pairings

We define a pairing to be a map e on three groups G,H and GT of prime order p,
so that e : G×H→ GT , with generators g ∈ G, h ∈ H is such that the following
properties hold:

• Bilinearity: for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab;

• Non-degeneracy: for ga ̸= 1G, h
b ̸= 1H, it holds that e(ga, hb) ̸= 1GT

,
where 1G′ denotes the unique identity element of the associated group G′

• Efficiency: e is efficiently computable.

We refer to G and H as the two source groups, and GT as the target group.
If an efficiently computable non-trivial isomorphism exists between G and

H, i.e., G ∼= H, we call the pairing symmetric or of type I. If G ̸∼= H, we
call the pairing asymmetric. Specifically, if an efficiently computable non-trivial
homomorphism exists from H to G (but not from G to H), we call the pairing
of type II, and if there exists no such efficiently computable homomorphism, we
call the pairing of type III. If we want to explicitly consider type-I pairings, we
denote the pairing as ê. Otherwise, we use simply e.

3.3 Formal definitions and security models

3.3.1 Full security against chosen-ciphertext attacks
The model for security against chosen-ciphertext attacks as introduced in Section 2.4.3
is formally defined as an extension of the CPA-security model in Definition 2.4. In
particular, we extend the query phases with the option to make decryption queries
for ciphertexts (that are not equal to the challenge ciphertext).

Definition 3.2: Full security against chosen-ciphertext attacks (CCA)

We define the security game IND-CCA(λ) between challenger and attacker as
follows:

- Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK,
and sends the master public key MPK to the attacker.
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- First query phase: The attacker can make two types of queries:

– Key query: The attacker queries secret keys for y ∈ Y, and obtains
SKy ← KeyGen(MSK, y) in response.

– Decryption query: The attacker sends a ciphertext CTx for x ∈ X
and some y ∈ Y is such that P (x, y) = 1, to the challenger, who
returns the message M ← Decrypt(MPK,SKy,CTx) (where SKy ←
KeyGen(MSK, y)).

- Challenge phase: The attacker specifies some x∗ ∈ X such that for
all y in the first key query phase, we have P (x∗, y) = 0, and generates
two messages M0 and M1 of equal length in M, and sends these to the
challenger. The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ

under x∗, i.e., CT∗
x∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting

ciphertext CT∗
x∗ to the attacker.

- Second query phase: This phase is identical to the first query phase,
with the additional restriction that the attacker cannot query keys for
y ∈ Y such that P (x∗, y) = 1 or make a decryption query for CT∗

x∗ .

- Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CCA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CCA ≤ negl(λ).

3.3.2 Ciphertext-policy ABE
In Section 2.3.2, we have given formal definitions of KP-ABE and CP-ABE by giving
the formal definition of the more general concept of predicate encryption. A special
case of PE on which we focus the most in this thesis is CP-ABE. CP-ABE can be
instantiated as PE in the following way. Suppose U is the universe of attributes,
then X = {A | A ⊆ P(U)} (where P(U) denotes the power set of U) is the col-
lection of all possible policies over attributes in U , and Y = {S | S ⊆ U} is the
collection of all possible sets of attributes. Then, the predicate PCP-ABE is defined as
PCP-ABE(A,S) = (A |= S). For completeness, we also include the formal definition of
CP-ABE, and its associated concepts (largely discussed in Chapter 2).

Definition 3.3: Ciphertext-policy ABE (CP-ABE) [BSW07]

A ciphertext-policy attribute-based encryption (CP-ABE) scheme over a message
space M consists of four algorithms:
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- Setup(λ) → (MPK,MSK): On input the security parameter λ, this prob-
abilistic algorithm generates the domain parameters (which includes a de-
scription of the universe of attributes U), the master public key MPK and
the master secret key MSK.

- KeyGen(MSK,S) → SKS : On input the master secret key MSK and set
of attributes S, this probabilistic algorithm generates a secret key SKS .

- Encrypt(MPK,A,M) → CTA: On input the master public key MPK,
access policy A and message M , this probabilistic algorithm generates a
ciphertext CTA.

- Decrypt(MPK,SKS ,CTA) → M : On input the master public key MPK,
the secret key SKS , and the ciphertext CTA, if A |= S, then it returns M .
Otherwise, it returns an error message ⊥.

Large-universe ABE. The universe of attributes U can be small or large [SW05].
If in the Setup, a public key is generated for each attribute, the universe is small.
Conversely, if the size of the master public key does not depend on the size of the
universe, the universe is large.

Multi-use ABE. The access policies may be restricted in the number of times that
one attribute may occur. If an attribute may only occur once, we call the scheme
one-use. If it allows unlimited occurrences of one attribute, we call it multi-use.

Non-monotone ABE. Three types of non-monotonicity have been formalized (see
Section 2.5.7): OSW-type [OSW07], OT-type [OT12], and OSWOT-type [AT20].
In the negations considered by Ostrovsky, Sahai and Waters (OSW) [OSW07],
e.g., “NOT profession: doctor”, the entire attribute set associated with the se-
cret key, e.g., “{profession: nurse, department: radiology, department: neurology}”, is
compared with the negated attribute to establish that the set does not contain it.
In ABE implementations, this translates in a decryption cost that grows in not only
the size of the policy, but also in size of the attribute sets. Such negations may thus
not be efficient if the sets are large. In the negations considered by Okamoto and
Takashima (OT) [OT12], e.g., “profession: NOT doctor”, the attribute labels, e.g.,
“profession”, play a role. In particular, the set must contain an attribute with label
“profession” and its value, e.g., “nurse”, must differ from the negated attribute. While
this is more efficient than OSW-type negations, the set of attributes is allowed to
contain only one attribute for each label, e.g., such negations are not supported for
the label “department” in our first example. Thus, schemes supporting this type of
negations are bounded in the number of label re-uses, which is not always desirable.
For instance, like in our example, users may have multiple attributes for labels such
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as “departments at a hospital”, “courses followed at a university” or “mail addresses”.
As a solution, Attrapadung and Tomida [AT20] introduced OSWOT-type negations,
e.g., “department: NOT cardiology”, to extend OT-type negations, such that the
negated attribute is compared with all attributes in the set that share the same label,
e.g., “{department: radiology,department: neurology}”. In this way, the flexibility of
OSW-type negations and the efficiency of OT-type negations can be combined.

3.3.3 Predicate key encapsulation
Although in the security analysis, it is simpler to consider the encryption variant of a
scheme, it is preferred to use key encapsulation in practice. In the key-encapsulation
variant of predicate encryption (Definition 2.3), which we call predicate KEM (P-
KEM), we replace Encrypt by Encaps and Decrypt by Decaps, where Encaps also
outputs a symmetric key, and Decaps outputs a symmetric key instead of a plaintext
message. This symmetric key is used to symmetrically encrypt the data.

Definition 3.4: Predicate key-encapsulation mechanism (P-KEM)

A predicate key-encapsulation mechanism for a predicate P : X × Y → {0, 1}
consists of four algorithms:

- Setup(λ, par) → (MPK,MSK): On input the security parameter λ and
parameters par, this probabilistic algorithm generates the domain param-
eters, the master public key MPK and the master secret key MSK.

- KeyGen(MSK, y)→ SKy: On input the master secret key MSK and some
y ∈ Y, this probabilistic algorithm generates a secret key SKy.

- Encaps(MPK, x) → (K,CTx): On input the master public key MPK and
some x ∈ X , this probabilistic algorithm generates an encapsulated sym-
metric key K and a ciphertext CTx.

- Decaps(MPK,SKy,CTx)→ K: On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if P (x, y) = 1, then it returns the
encapsulated symmetric key K. Otherwise, it returns an error message ⊥.

Correctness. For all x ∈ X , and y ∈ Y such that P (x, y) = 1,

Pr[(MPK,MSK)← Setup(λ); (K,CTx)← Encaps(MPK, x);

Decaps(MPK,KeyGen(MSK, y)),CTx) ̸= K] ≤ negl(λ).

Full security against chosen-plaintext attacks. The full security model for P-
KEM is defined similarly as that for PE (Definition 2.4). The crucial difference
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between the two is that the goal of the attacker is to distinguish a symmetric key
produced by the encapsulation algorithm from a randomly generated key.

Definition 3.5: CPA-security for P-KEM

We define the security game IND-CPA(λ) between challenger and attacker as
follows:

- Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK,
and sends the master public key MPK to the attacker.

- First query phase: The attacker queries secret keys for y ∈ Y, and
obtains SKy ← KeyGen(MSK, y) in response.

- Challenge phase: The attacker specifies some x∗ ∈ X such that for
all y in the first key query phase, we have P (x∗, y) = 0, and sends it
to the challenger. The challenger first encapsulates a key under x∗, i.e.,
(K∗,CTx∗)← Encaps(MPK, x∗), and then flips a coin β ∈R {0, 1}. If β =
0, the key K∗ is replaced by a value that is selected uniformly at random
from the key space. The challenger then sends the resulting encapsulation
key K∗ and ciphertext CTx∗ to the attacker.

- Second query phase: This phase is identical to the first query phase,
with the additional restriction that the attacker can only query y ∈ Y such
that P (x∗, y) = 0.

- Decision phase: The attacker outputs a guess β′ for β.

The attacker’s advantage is defined as AdvP-KEM,IND-CPA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvP-KEM,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ X
before the Setup phase. In the co-selective security model, the attacker commits
to all y ∈ Y before the Setup phase.

3.3.4 Multi-authority PE
We also give a unified formal definition of multi-authority PE, which we already
informally discussed in Section 2.8.

Definition 3.6: Multi-authority predicate encryption (MA-PE)

A multi-authority PE scheme for a predicate P : X ×Y → {0, 1} over a message
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spaceM, for authoritiesA1, ...,Anaut with YAi ⊆ Y and for all i ̸= j, YAi∩YAj =
∅, consists of five algorithms:

- GlobalSetup(λ)→ GP: On input the security parameter λ, this algorithm
generates the global domain parameters GP.

- AuthoritySetup(GP) → (A,MPKA,MSKA): On input the global domain
parameters, this probabilistic algorithm outputs the authority identifier A,
the master public key MPKA and the master secret key MSKA.

- KeyGen(A,MSKA,GID, yGID,A)→ SKGID,A,yGID,A : On input the author-
ity identifier A, the corresponding master secret key MSKA and some
yGID,A ∈ YA, for the user with global identifier GID, this probabilistic
algorithm generates a secret key SKGID,A,yGID,A .

- Encrypt({Ai,MPKAi}i, x,M)→ CTx: On input a set of authority identi-
fiers, the associated master public keys MPKAi , some x ∈ X and message
M , this probabilistic algorithm generates a ciphertext CT{Ai}i,x.

- Decrypt({A,MPKA,SKGID,A,yGID,A},CT{Ai}i,x) → M : On input a set
of authority identifiers, the associated master public keys MPKA, secret
keys {SKGID,A,yGID,A} and ciphertext CT{Ai}i,x, if P (x, y) = 1 (where
y =

⋃
A yGID,A), it returns M . Otherwise, it returns error message ⊥.

Security. The security model is similar to that of regular PE (Definition 2.4). In
the Setup phase, both the GlobalSetup and AuthoritySetup are run. Furthermore,
a set of authorities C ⊆ [naut] is corrupted before the Setup phase is run (which we
call static corruption). In the Setup, the master secret keys corresponding to the
corrupt authorities are also shared with the attacker. Then, we define YC ⊆ Y to
be the collective set of key predicates that the attacker controls, by corrupting the
authorities and querying secret keys. In the challenge phase and second query phase,
we have the additional restriction that the challenge x∗ is such that P (x∗, y) = 0 for
all y ∈ YC.

Multi-authority ciphertext-policy ABE. A specific instance of multi-authority
PE is multi-authority CP-ABE, which is the multi-authority variant of CP-ABE.
In this special subtype of CP-ABE, we add another function ρ̃ to the access policy
A = (A, ρ, ρ̃), which maps the rows of the matrix to the corresponding authority
identifiers, i.e., ρ̃ : [n1]→ {Ai}i∈[naut].

3.3.5 Authenticated symmetric encryption
In practice, it is common to combine an encapsulation scheme—to encapsulate a
symmetric key—and an (authenticated) symmetric encryption scheme—to encrypt



66 Chapter 3. Theoretical background

the data. In Chapter 9, we show how this can be done efficiently for the CPA-secure
schemes analyzed and proposed in this thesis. To this end, we use authenticated
symmetric encryption, for which we give the relevant definitions below.

Definition 3.7: Symmetric encryption (SE)

Let λ be the security parameter. A symmetric encryption scheme SE = (Enc,Dec),
with key K ∈ K(λ), where K(λ) is some key space of size 2λ, is defined by

- EncK(M)→ CTsym: On input message M ∈ {0, 1}∗, encryption returns a
ciphertext CTsym.

- DecK(CTsym) → M : On input ciphertext CTsym, decryption returns a
message M or an error message ⊥.

The scheme is correct if for all keys K ∈ K(λ) and all messages M ∈ {0, 1}∗,
we have DecK(EncK(M)) = M .

Security of symmetric encryption. For symmetric encryption, we introduce the
notions of ciphertext indistinguishability and ciphertext authenticity. Informally, ci-
phertext indistinguishability ensures that an attacker cannot distinguish between en-
cryptions of any two messages. More formally, it is defined as follows.

Definition 3.8: Ciphertext indistinguishability of SE

Let λ be a security parameter and let SE = (Enc,Dec) be an (authenticated)
symmetric encryption scheme. Consider the following game between challenger
C and attacker A. The challenger first picks a key K ∈ K(λ). Then, the at-
tacker specifies two messages M0,M1 and gives these to the challenger, who flips
a coin β ∈R {0, 1} and returns CTsym ← EncK(Mβ) to the attacker. The at-
tacker A outputs a guess β′ for β. Then, SE = (Enc,Dec) has indistinguishable
ciphertexts if for all polynomial-time attackers A in the game above holds:

AdvSE,CIND =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣ ≤ negl(λ).

In this work, we assume that K(λ) is the target group GT . Because most encryp-
tion schemes take a key that is a bit string of λ or 2λ bits as input, we use a secure
key derivation function KDF: K(λ) → {0, 1}λ (or {0, 1}2λ) to map the target group
elements to strings [CS03].

We also formally define ciphertext authenticity. Informally, ciphertext authenticity
ensures that an attacker cannot generate a new valid ciphertext for some key for which
one ciphertext is given.
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Definition 3.9: Ciphertext authenticity of authenticated encryption

Let λ be a security parameter and let SE = (Enc,Dec) be an (authenticated)
symmetric encryption scheme. Consider the following game between challenger
C and attacker A. The challenger first picks a key K ∈ K(λ). Then, the attacker
specifies one message M and gives it to the challenger, who returns CTsym ←
EncK(M) to the attacker. The attacker outputs a ciphertext CT′

sym. Then, the
encryption scheme has ciphertext authenticity if for all such attackers holds that
AdvSE,CAUT = Pr[DecK(CT

′
sym) ̸= ⊥ ∧ CT′

sym ̸= CTsym] ≤ negl(λ).

3.3.6 Hash functions
In this thesis, we use three types of hash functions, which can be used to map any
arbitrary string into a fixed output domain. For example, we use hash functions to
map arbitrary attribute strings to group elements (see e.g., Section 2.5.5).

Definition 3.10: Collision-resistant hash function [Dam89]

A collision-resistant hash function is a map CR: {0, 1}∗ → {0, 1}2λ that takes
an arbitrary-length bit string as input, and outputs a bit string of 2λ bits. The
CR is collision resistant if for all attackers, it holds that the advantage AdvCR =
Pr[x ̸= x′ ∧CR(x) = CR(x′)] ≤ negl(λ), where x, x′ ∈ {0, 1}∗ denote the output
of the attacker.

Definition 3.11: Full-domain hash (FDH) in the group G′

A full-domain hash (FDH) is a map H : {0, 1}∗ → G′ that takes as input an
arbitrarily-long bit string, and outputs an element in the co-domain, in this
case, the group G′. It is secure, if it is indistinguishable from a random oracle,
i.e., its outputs are generated negligibly close to uniformly at random over the
domain G′.

Definition 3.12: Random-prefix collision-resistant hash function (RPC)
[ACIK10]

Let λ be a security parameter, and let RPC: {0, 1}λ×G → Z be a hash function
that takes two inputs, one in {0, 1}λ and one in G, and maps them to an element
in Z. Consider the following game between challenger C and attacker A. The
attacker gives the challenger some g ∈ G. The challenger then picks k ∈ {0, 1}λ,
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and gives k and RPC(k, g) to the attacker. Then, the RPC is random-prefix
collision resistant if for all such attackers, it holds that the advantage AdvRPC =
Pr[(k′, g′) ∈ {0, 1}λ × G ∧ (k′, g′) ̸= (k, g) ∧ RPC(k′, g′) = RPC(k, g)] ≤ negl(λ).

In this thesis, we use the concrete instantiation given by Abe et al. [ACIK10]. In
particular, their instantiation of the RPC hash is a second-preimage resistant hash
that takes as input a 128-bit string k and the element in G. Note that second-
preimage resistance is sufficient (and that we do not require the stronger notion of
collision resistance, as implied by the terminology), because the definition of an RPC
hash requires that it is hard to find a second input to the hash that yields the same
output as the fixed input given by the challenger.

3.4 Online/offline ABE and PE
As mentioned in Section 2.10.1, Hohenberger and Waters [HW14] introduced the no-
tion of online/offline ABE, which can be used to speed up the online execution time
of the key generation and encryption algorithms. We adapt the definitions of Hohen-
berger and Waters to the predicate encryption paradigm. We also emphasize that the
online/offline variants of the key generation and encryption algorithms are merely an
extension to the key generation and encryption algorithms of the original PE. They
can be used interchangeably, i.e., any authorized key generated with the regular or
online/offline key generation algorithm can decrypt any ciphertext generated with the
regular or online/offline encryption algorithm. Hence, our definition is also presented
as an extension to PE rather than as a separate primitive. To account for the pos-
sibility that online/offline extensions may exist for one of the two and not the other,
we also present the online/offline versions of the algorithms as optional. Furthermore,
we include a final step in the online/offline key generation, to be executed after the
keys have been received by the user. In this step, the online/offline secret keys are
combined such that secret keys can be generated that are indistinguishable from se-
cret keys in a regular run of the key generation algorithm. Therefore, decryption with
keys generated by the online/offline algorithms does not incur any additional costs
compared to decryption with keys generated by the regular algorithm.

Definition 3.13: Online/offline predicate encryption

A predicate encryption scheme for a predicate P : X ×Y → {0, 1} over a message
space M with optional online/offline key generation and encryption consists of
nine algorithms:

- Setup(λ)→ (MPK,MSK): On input the security parameter λ, this proba-
bilistic algorithm generates the domain parameters, the master public key
MPK and the master secret key MSK.
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- Regular.KeyGen(MSK, y) → SKy: On input the master secret key MSK
and some y ∈ Y, this probabilistic algorithm generates a secret key SKy.

- Offline.KeyGen(MSK)→ ISK: On input the master secret key MSK, this
optional probabilistic algorithm generates an intermediate secret key ISK.

- Online.KeyGen(MSK, ISK, y)→ OO.SKy: On input the master secret key
MSK, intermediate secret key ISK and some y ∈ Y, this optional proba-
bilistic algorithm generates an online/offline secret key OO.SKy.

- FinalStep.KeyGen(OO.SKy)→ SKy: On input an online/offline secret key
OO.SKy for some y ∈ Y, this optional probabilistic algorithm generates a
(regular) secret key SKy.

- Regular.Encrypt(MPK, x,M) → CTx: On input the master public key
MPK, some x ∈ X and message M , this probabilistic algorithm generates
a ciphertext CTx.

- Offline.Encrypt(MPK)→ ICT: On input the master public key MPK, this
optional probabilistic algorithm generates an intermediate ciphertext ICT.

- Online.Encrypt(MPK, ICT, x,M)→ OO.CTx: On input the master public
key MPK, intermediate ciphertext ICT, some x ∈ X and message M ,
this optional probabilistic algorithm generates an online/offline ciphertext
OO.CTx.

- Decrypt(MPK, (OO.)SKy, (OO.)CTx) → M : On input the master public
key MPK, the (online/offline) secret key (OO.)SKy, and the (online/offline)
ciphertext (OO.)CTx, if P (x, y) = 1, then it returns M . Otherwise, it
returns an error message ⊥.

3.4.1 Security model
We also adjust the security model in [HW14] to match our definition of online/offline
predicate encryption. In particular, the attacker can request regular or online/offline
keys (but not intermediate keys) during the query phases, and request either a regular
or online/offline ciphertext during the challenge phase.

Definition 3.14: Full CPA-security for online/offline PE

We define the security game IND-CPA-OO(λ) between challenger and attacker
as follows:

- Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK,
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and sends the master public key MPK to the attacker. The challenger also
initializes an empty list L and a counter cL = 0.

- First query phase: The attacker can make the following types of queries
(in any order, any number of times, polynomially bounded in λ):

– Regular key query: The attacker queries secret keys for y ∈ Y, and
obtains SKy ← KeyGen(MSK, y) in response.

– Intermediate secret key query: The attacker queries intermediate
secret keys. The challenger generates ISK ← Offline.KeyGen(MSK),
stores (cL, ISK) in list L and updates the counter cL ← cL + 1.

– Online/offline secret key query: The attacker queries online/offline
secret keys for y ∈ Y and set of indices I ⊆ [0, cL] such that none
of the indices in I have been queried before. (Otherwise, there is no
entry in the table for one or more indices, and then, the challenger re-
turns an error message ⊥.) The challenger selects intermediate secret
keys (i, ISKi) for all i ∈ I from the list, deletes these entries from the
list and generates OO.SKy ← Online.KeyGen(MSK, {ISKi}i∈I , y).

- Challenge phase: The attacker specifies some x∗ ∈ X such that for all y
in the first phase, P (x∗, y) = 0 holds, and generates two equal-length mes-
sages M0 and M1. The attacker sends these to the challenger and chooses
whether it wants to be queried on a regular or online/offline ciphertext:

– Regular challenge: The challenger flips a coin, i.e., β ∈R {0, 1},
encrypts Mβ under x∗, i.e., CTx∗ ← Encrypt(MPK, x∗,Mβ), and
sends the resulting ciphertext CTx∗ to the attacker.

– Online/offline challenge: The challenger first generates intermedi-
ate ciphertexts ICT ← Offline.Encrypt(MPK). Then, the challenger
flips a coin, i.e., β ∈R {0, 1}, online encrypts Mβ under x∗ with ICT,
i.e., OO.CTx∗ ← Online.Encrypt(MPK, ICT, x∗,Mβ), and sends the
resulting ciphertext OO.CTx∗ to the attacker.

- Second query phase: This phase is identical to the first query phase,
with the additional restriction that the attacker can only query y ∈ Y such
that P (x∗, y) = 0.

- Decision phase: The attacker outputs a guess β′ for β.

The online/offline predicate encryption scheme is fully secure if all polynomial-
time attackers have at most a negligible advantage in this security game, i.e.,
AdvPE,IND-CPA-OO = |Pr[β′ = β]− 1

2 | ≤ negl(λ).
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3.5 Complexity assumptions
In Section 2.4.5, we mentioned that the security of many ABE schemes depends on
the hardness of non-parametrized and parametrized complexity assumptions, such
as the symmetric external Diffie-Hellman or the decisional bilinear Diffie-Hellman
assumptions and q-type assumptions.

3.5.1 Non-parametrized assumptions

Definition 3.15: The symmetric external Diffie-Hellman (SXDH) as-
sumption

Let λ be the security parameter. Let e : G × H → GT be a pairing over three
groups G,H,GT of prime order p and let g ∈ G and h ∈ H be two generators.
The challenger generates x, y ∈R Zp, outputs

g′, g′x, g′y, where g′ ∈ {g, h}.

The challenger flips a coin β ∈R Zp and outputs T ∈R G′ if β = 0 and T = g′xy

if β = 1 (where G′ = G if g′ = g and G′ = H if g′ = h). The attacker outputs
a guess β′ for β. The advantage of the attacker is defined as AdvDDH,G′ =
|Pr[β′ = 1 | β = 1]− Pr[β′ = 1 | β = 0]|. The decisional bilinear Diffie-Hellman
assumption holds in G′ if all polynomial-time attackers have at most a negligible
advantage, i.e., AdvDDH,G′ ≤ negl(λ). The symmetric external Diffie-Hellman
assumption holds if the DDH assumption holds in G and H, i.e., AdvSXDH ≤
AdvDDH,G + AdvDDH,H ≤ negl(λ).

Definition 3.16: The decisional bilinear Diffie-Hellman (DBDH) as-
sumption

Let λ be the security parameter. Let e : G × H → GT be a pairing over three
groups G,H,GT of prime order p, and let g ∈ G, h ∈ H be two generators. The
challenger generates x, y, z ∈R Zp, outputs

g, g′x, g′y, g′z, where g′ ∈ {g, h}.

The challenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0 and
T = e(g, h)xyz if β = 1. The attacker outputs a guess β′ for β. The advantage of
the attacker is defined as AdvDBDH = |Pr[β′ = 1 | β = 1] − Pr[β′ = 1 | β = 0]|.
The decisional bilinear Diffie-Hellman assumption holds if all polynomial-time
attackers have at most a negligible advantage, i.e., AdvDBDH ≤ negl(λ).
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3.5.2 The uber-assumption family
As mentioned in Section 2.4.5, many q-type assumptions can be captured in the uber-
assumption framework [BBG05, Boy08]. Specifically, Boneh, Boyen and Goh prove
generic lower bounds on the complexity of such q-type assumptions in the GGM.

Definition 3.17: The uber-assumption family [BBG05, Boy08]

Let e : G × H → GT be a pairing over three groups G,H,GT of prime order p,
and let g ∈ G, h ∈ H be two generators. Let nG, nH, nGT

, nc ∈ N be four positive
integers. Suppose that, for all G′ ∈ {G,H,GT }, we have vectors of polynomials
PG′ ∈ Zp[X1, ..., Xnc

]nG′ . Let PT ∈ Zp[X1, ..., Xnc
] be another polynomial. The

challenger generates x1, ..., xnc ∈R Zp, and outputs

gPG(x1,...,xnc ), hPH(x1,...,xnc ), e(g, h)PGT
(x1,...,xnc ).

The challenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0 and T =
e(g, h)PT(x1,...,xnc ) if β = 1. The attacker outputs a guess β′ for β. The attacker’s
advantage is defined as Adv(nG,nH,nGT

,nc)-DDH = |Pr[β′ = 1 | β = 1] − Pr[β′ =

1 | β = 0]|. The decisional (nG, nH, nGT
, nc)-Diffie-Hellman ((nG, nH, nGT

, nc)-
DDH) assumption holds if all polynomial-time attackers have at most a negligible
advantage, i.e., Adv(nG,nH,nGT

,nc)-DDH ≤ negl(λ).

Remark 3.1

For type-I pairings, we set PG = PH.

Boneh, Boyen and Goh [BBG05] show that, if PT is linearly independent of PGT

and all products of the polynomials (in the entries) in PG with the polynomials
in PH, then the decisional (nG, nH, nGT

, nc)-Diffie-Hellman ((nG, nH, nGT
, nc)-DDH)

assumption holds with the following time complexity [Boy08, §5.2].

Corollary 3.1: Asymptotic lower bound for uber assumptions [Boy08]

Let p, PG′ and PT be as in Definition 3.17. Suppose PT is independent of PGT

and all products of the polynomials in PG with the polynomials in PH. Let
degG′ be the maximum degree of the polynomials in PG′ , let degT be the degree
of PT , and set deg = max({degGT

,degT ,degG +degH}). Then, any attacker
A that can solve the decisional (nG, nH, nGT

, nc)-Diffie-Hellman problem in the
generic group model must take time at least O(

√
p/deg − nc).
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Part II

The pair encodings framework





75

Chapter 4

The power of pair encodings

The pair encodings framework is an important result in the simplified design
of complex ABE and PE schemes. In particular, it reduces the effort of prov-
ing security of a scheme to proving security of the associated pair encoding,
which can then be transformed into a provably secure pairing-based encryption
scheme with a compiler. Especially the symbolic property, as introduced by
Agrawal and Chase (Eurocrypt ’17), has proven to be a valuable security no-
tion that is both simple to verify and applies to many schemes. Nevertheless,
several practical extensions using full-domain hashes or employing multiple au-
thorities cannot be instantiated with this compiler, and therefore still require
complicated proof techniques.

In this chapter, we review the current state of the pair encodings framework,
and we present the first compiler for ABE and PE that supports such practical
extensions. To this end, we generalize the definitions of pair encodings and
the symbolic property. With our compiler, we flexibly instantiate any pair
encoding scheme that satisfies this extended notion of the symbolic property
in any pairing-friendly groups, and generically prove the resulting scheme to
be selectively secure. To illustrate the effectiveness of our new compiler, we
give several new multi-authority and hash-based constructions.

4.1 Introduction
In 2014, Attrapadung [Att14a] and Wee [Wee14] introduced frameworks for pair and
predicate encodings, respectively, to simplify the design and analysis of complex pred-
icate encryption schemes. Informally speaking, pair and predicate encoding schemes
abstract a pairing-based predicate encryption scheme to “what happens in the ex-
ponent of the keys and ciphertexts”. The idea behind these frameworks is that the
designer only needs to prove information-theoretic or algebraic notions of security for
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these encodings. Then, via a generic compiler, Attrapadung and Wee construct pred-
icate encryption schemes by instantiating the encodings in some carefully-constructed
pairing-friendly groups. Subsequently, they generically prove full security, using dual
system encryption techniques [Wat09], of the resulting PE from the security of the
encoding and the security of the groups.

Since its invention, many works have contributed to the pair encodings1 framework
[AY15, CGW15, Att16, AC16, AC17b, ABS17, Att19, Amb21]. Nowadays, many
pairing-based schemes can be captured in this framework, ensuring that these effi-
ciently satisfy a strong notion of security. Not only has the pair encodings framework
become a powerful tool in the design of new schemes, it is also possible to generically
transform or compose existing schemes [AY15, AC17b, ABS17, Att19, Amb21]. As a
result, increasingly complex schemes can be constructed without further complicat-
ing the security proofs. For example, revocation mechanisms [ABS17, YAE+17] and
range attributes [AHO+16b] can be generically and efficiently supported [Att19].

Arguably the most powerful security notion for pair encodings is the symbolic
property, which was first introduced as such by Agrawal and Chase [AC17b], but
builds on several prior works, e.g., [LW12, Att14a, Att16]. Interestingly, the symbolic
property is meant to make security proofs easy to verify. In particular, this effort boils
down to performing simple linear algebra. This is a much simpler task than verifying
complex security reductions that require significant expertise. From a historical per-
spective, the symbolic property builds on the ideas behind the more classical proofs,
called “program-and-cancel” proofs (Section 2.6.1), which were used to prove selective
security in the early days [BB04, SW05]. In the selective-security model, the attacker
commits to the predicate that they are going to attack before seeing the public keys,
which is unreasonable to assume in practice [CKMS16].

Nevertheless, even though the symbolic property is strongly linked [LW12, Att14a,
AC17b] to these classical proofs, it is not clear if the symbolic property can be used
to prove selective security generically. Of course, this also raises the question of
whether we should care about this particularly low-hanging fruit at all. If we can
use the symbolic property to build fully secure schemes, then why would we want
to use it to build weaker schemes? Our answer to this question is simple: because
the resulting schemes are simpler, more efficient, and we may be able to generically
build practical schemes that we cannot build with the current full-security compilers
yet [Att14a, Att16, AC17b]. Notably, those compilers do not readily support various
practical properties, e.g.,

• the employment of multiple authorities (Section 2.8);

• full-domain hashes, e.g., to achieve large-universeness efficiently (Section 2.5.5);

• or flexible instantiations in the pairing-friendly groups [AGH13, AGOT14] (which
heavily influences the scheme’s efficiency (Chapter 6)).

1Because predicate encodings are a subset of pair encodings [ABS17], we will use the term pair
encodings throughout the rest of this thesis.
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Fully secure schemes that do satisfy such properties [LW11a, AC17a, TKN20] need
to resort to more complicated proof techniques (and on a case-by-case basis), and
move us further away from the simplicity of the symbolic property again. Moreover,
because of this complexity, many schemes that do have such properties have turned
out to be broken [VA21]. This is, by any means, much worse than using a scheme
that is “only” selectively secure.

In addition, the broader audience seems to have confidence in selectively secure
schemes, and considers these to be practical. In particular, selectively secure schemes
are typically at least a factor 2 more efficient than similar schemes in the full-security
setting [AC17b, VAH21]. Because their descriptions do not require the use of com-
plex structures such as dual system groups [CW13, CW14a], they are also simpler
and more intuitive. By extension, they are easier to prototype and analyze for any
given practical setting [dlPVA22]. Presumably, these are reasons why many public
cryptographic libraries contain many implementations of selectively secure schemes
[AGM+13, Zeu20, dlPVA, FEN], or why half of the schemes considered by the Euro-
pean Telecommunications Standards Institute [ETS18b] are selectively secure. All in
all, simplifying the design of selectively secure schemes is valuable.

4.1.1 Importance of pair encodings in this thesis
In Parts II and III of this thesis, we rely on the pair encodings framework. In ad-
dition to the reasons already mentioned, we do this for two more reasons. First,
pair encodings provide a more compact notation, making it easier to cryptanalyze
the schemes. Second, the pair encodings framework implies a common structure of
ABE schemes (see Definition 2.6) that simplifies the fair analysis of the efficiency of
multiple schemes. More specifically,

• we consider pair encodings to cryptanalyze existing schemes more effectively
(Chapter 5);

• we use the common structure of the schemes implied by pair encodings to bench-
mark and compare the efficiency of existing schemes (Chapter 6);

• we use the symbolic security property [AC17b] to construct new provably secure
schemes (Chapters 7 and 8);

• we formalize a new composition of pair encodings to create a new generic trans-
formation for CCA-security (Chapter 9).

4.1.2 Our contribution: a new compiler
In addition to reviewing the current state of the pair encodings framework, we also
propose a new generic compiler. This compiler uses the symbolic property to generi-
cally prove selective security of the resulting predicate encryption scheme. With this
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new compiler, we are able to achieve properties that cannot be generically supported
with existing full-security compilers (yet), i.e.,

• multi-authority extensions;

• full-domain hashes;

• flexible instantiations in the pairing-friendly groups.

To achieve these properties, we generalize the definitions of pair encodings and the
symbolic property, and introduce maps that explicitly address the use of hashes and
the instantiations of the encodings in the pairing-friendly groups.

As a result of our compiler, we also obtain new CP-ABE schemes supporting
MSPs. In particular, we give new constructions for decentralized large-universe ABE
(Section 2.8). We also explain how the new compiler can be used to obtain a single-
authority ABE with attribute-wise key generation, which addresses Direction 2.10.

Relation to fully secure schemes in the generic group model. Our compiler
also strenghtens the connection between selectively and fully secure schemes. Previ-
ously, Ambrona et al. [ABGW17] showed that any scheme that is not trivially broken
is provably fully secure in the generic group model (GGM) (Section 2.4.5). The class
of encoding schemes that they consider overlaps with that of the Agrawal-Chase com-
piler [AC17b], which is also covered by our compiler. For this class of schemes, we
obtain the following result: the compiled scheme is provably fully secure in the GGM
(with some non-trivial security loss), and it is provably selectively secure in the stan-
dard model under a q-type assumption (which is a type of assumption that grows
stronger as q grows).

4.2 Definition of pair encoding schemes
Throughout the years, the notion of pair encoding schemes has been defined and re-
fined [Att14a, Att16, AC16, AC17b]. We provide the most refined definition below.
This definition is related to the standard form proposed in Definition 2.6. In par-
ticular, pair encoding schemes consider the encoding vectors b,k and c, which are
associated with the master public key, the secret keys and ciphertexts, respectively.
Furthermore, this definition considers the specific structure of the entries in the vec-
tor, which are polynomials over certain variables. Concretely, the entries of the key
encodings k and the ciphertext encodings c are polynomials over common variables
b and some key and ciphertext-specific variables. These key and ciphertext-specific
variables may occur either together with some common variable, e.g., rb or sb, or
alone, e.g., r̂ or ŝ. We call these non-lone and lone variables, respectively.
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Definition 4.1: Pair encoding schemes (PES) [AC17b]

A pair encoding scheme for a predicate P : X ×Y → {0, 1} and prime number p,
with optionally some additional parameters par, is given by four deterministic
polynomial-time algorithms as described below.

- Param(par) → (n,b): On input par, the algorithm outputs n ∈ N that
specifies the number of common variables, which are denoted as b =
(b1, ..., bn).

- EncKey(y, p, α,b) → (m1,m2,k(α, r, r̂,b, y)): On input p ∈ N and y ∈
Y, this algorithm outputs a vector of polynomials k = (k1, ..., km3

), with
m3 ∈ N, defined over non-lone variables r = (r1, ..., rm1

) and lone variables
r̂ = (r̂1, ..., r̂m2). Specifically, the polynomial ki is expressed as

ki = δiα+
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.

- EncCt(x, p,b) → (w1, w2, c(s, ŝ,b, x)): On input p ∈ N and x ∈ X , this
algorithm outputs a vector of polynomials c = (c1, ..., cw3

), with w3 ∈ N,
defined over non-lone variables s = (s0 = s, s1, ..., sw1) and lone variables
ŝ = (ŝ1, ..., ŝw2). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.

- Pair(x, y, p)→ (E,E): On input p ∈ N, x ∈ X , and y ∈ Y, this algorithm
outputs two matrices E ∈ Z(w1+1)×m3

p and E ∈ Zw3×m1
p .

A PES is correct, if for every x ∈ X and y ∈ Y such that P (x, y) = 1, it
holds that sEk⊺ + cEr⊺ = αs.

Notation. In this thesis, we use the same representation for corresponding indices in
the vectors and matrices. In this way, we can efficiently identify which entries should
be combined during, e.g., the Pair algorithm. For example, consider the index 0 of
s = s0 in the non-lone variable vector s = (s, s1, ..., sw1

), which we thus also use as row
index in the matrix E. Additionally, we often use alternative notation to represent the
row and column indices of the matrices and vectors. We do this to efficiently match
these entries with other parameters. For example, consider the index representations
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(1, j) and (2, j, k), where j ∈ [n1] and k ∈ [n2], which are mapped injectively in the
interval [n1(n2 + 1)].

4.2.1 Examples of pair encoding schemes
We give three examples of pair encoding schemes, i.e., those implied by the Waters
scheme [Wat11, §3] and the Rouselakis-Waters scheme [RW13, §3], and the Agrawal-
Chase pair encoding scheme [AC17b, AC17c, §B.1].

Construction 4.1: The PES for [Wat11]

The PES implied by the Waters [Wat11, §3] scheme is defined as follows:

- Param(U): On input the universe U , the algorithm outputs n = |U| + 1,
and b = (b, {batt}att∈U ).

- EncKey(S, p): On input set of attributes S, this algorithm outputs k =
(k0 = α + rb, {katt = rbatt}att∈S) defined over non-lone variables r = (r)
and lone variables r̂ = ∅. Note that m1 = 1 and m2 = 0.

- EncCt(A, p): On input access policy A = (A, ρ), this algorithm outputs
c = ({cj = λj + sjbρ(j)}j∈[n1]), where λj = Aj,1sb +

∑
k∈[2,n2]

Aj,kvk,
defined over non-lone variables s = (s, {sj}j∈[n1]) and lone variables ŝ =
({vk}k∈[2,n2]). Note that w1 = n1 and w2 = n2 − 1.

- Pair(A,S, p): On input policy A, and set of attributes S, if A |= S, then
this algorithm determines Υ = {j ∈ [n1] | ρ(j) ∈ S} and {εj ∈ Zp}j∈Υ

such that
∑

j∈Υ εjλj = sb (Definition 2.5), and outputs two matrices E =

1
(w1+1)×m3

0,0 +
∑

j∈Υ εj1
(w1+1)×m3

j,ρ(j) and E = −
∑

j∈Υ εj1
w3×m1
j,1 .

Construction 4.2: The PES for [RW13]

The PES implied by the Rouselakis-Waters [RW13, §3] scheme is defined as
follows:

- Param(∅): The algorithm outputs n = 4, and b = (b, b′, b0, b1).

- EncKey(S, p): On input set of attributes S, this algorithm outputs k =
(k0 = α + rb, {katt = rb′ + ratt(b0 + xattb1)}att∈S), where xatt ∈ Zp

is the integer representation of att, defined over non-lone variables r =
(r, {ratt}att∈S) and lone variables r̂ = ∅. Note that m1 = |S| + 1 and
m2 = 0.
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- EncCt(A, p): On input access policy A = (A, ρ), this algorithm outputs
c = ({c1,j = λj + sjb

′, c2,j = sj(b0 + xρ(j)b1)}j∈[n1]), where λj = Aj,1sb+∑
k∈[2,n2]

Aj,kvk and xatt is the representation of att in Zp, defined over
non-lone variables s = (s, {sj}j∈[n1]) and lone variables ŝ = ({vk}k∈[2,n2]).
Note that w1 = n1 and w2 = n2 − 1.

- Pair(A,S, p): On input policy A, and set of attributes S, if A |= S,
then this algorithm determines Υ = {j ∈ [n1] | ρ(j) ∈ S} and
{εj ∈ Zp}j∈Υ such that

∑
j∈Υ εjλj = sb (Definition 2.5), and out-

puts two matrices E = 1
(w1+1)×m3

0,0 +
∑

j∈Υ εj1
(w1+1)×m3

j,ρ(j) and E =

−
∑

j∈Υ εj

(
1w3×m1

(1,j),0 + 1w3×m1

(2,j),ρ(j)

)
.

Construction 4.3: The PES for [AC17b, AC17c]

The PES by the Agrawal and Chase [AC17b, AC17c, §B.1] scheme is defined as
follows:

- Param(U): On input the universe U , the algorithm outputs n = |U| + 1,
and b = (b, {batt}att∈U ).

- EncKey(S, p): On input set of attributes S, this algorithm outputs k =
(k0 = α + rb, {katt = rbatt}att∈S) defined over non-lone variables r = (r)
and lone variables r̂ = ∅. Note that m1 = 1 and m2 = 0.

- EncCt(A, p): On input access policy A = (A, ρ), this algorithm determines
a map τ : [n1] → [m] (which ensures that the rows of A corresponding
to the same attribute are assigned to different random integers), where
m = maxj∈[n1] |ρ−1(ρ(j))|, such that ρ(j) = ρ(j′) implies τ(j) ̸= τ(j′) for
all j, j′ ∈ [n1] with j ̸= j′, and outputs c = ({cj = λj + sτ(j)bρ(j)}j∈[n1]),
where λj = Aj,1sb +

∑
k∈[2,n2]

Aj,kvk, defined over non-lone variables s =

(s, {sj}j∈[n1]) and lone variables ŝ = ({vk}k∈[2,n2]). Note that w1 = n1 and
w2 = n2 − 1.

- Pair(A,S, p): On input policy A, and set of attributes S, if A |= S, then
this algorithm determines Υ = {j ∈ [n1] | ρ(j) ∈ S} and {εj ∈ Zp}j∈Υ

such that
∑

j∈Υ εjλj = sb (Definition 2.5), and outputs two matrices E =

1
(w1+1)×m3

0,0 +
∑

j∈Υ εj1
(w1+1)×m3

τ(j),ρ(j) and E = −
∑

j∈Υ εj1
w3×m1
j,1 .
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4.3 Security of pair encodings
We consider two notions of security for pair encodings: the symbolic property, which
is an algebraic notion of security, and the perfect master-key hiding property, which
is an information-theoretic notion of security.

4.3.1 The symbolic property
The symbolic property is a powerful security notion for pair encoding schemes that is
purely algebraic. Roughly, the selective and co-selective symbolic property are based
on the classical security notions of selective and co-selective security for PE (Def-
inition 2.4). Recall that, in these models, the attacker commits to the challenge
access policy (resp. set of attributes). This is used in “program-and-cancel” proofs
[Wat11, RW13], in which the challenger embeds the policy (resp. set) in the public
keys. In the simulation of the secret keys and challenge ciphertext, the components
are programmed in a specific way, using that the set does not satisfy the policy (resp.
policy is not satisfied by the set). Typically, the components that cannot be pro-
grammed are canceled by other non-programmable components. In the pair encodings
framework, this “programming” corresponds to “substitution”, and the “canceling” cor-
responds to “evaluating to 0”. In particular, the symbolic property considers whether
the variables in the encodings can be substituted by certain vectors and matrices, such
that evaluating the polynomials with these substitutions yields the all-zero vector.

Definition 4.2: Symbolic security property (Sym-Prop) [AC17b]

A pair encoding scheme Γ = (Param, EncKey, EncCt, Pair) for a predicate
P : X × Y → {0, 1} satisfies the (d1, d2)-selective symbolic property for positive
integers d1 and d2 if there exist deterministic polynomial-time algorithms EncB,
EncS, and EncR such that for all p,par, x ∈ X and y ∈ Y with P (x, y) = 0, we
have that

- EncB(x)→ B1, ...,Bn ∈ Zd1×d2
p ;

- EncR(x, y)→ r1, ..., rm1 ∈ Zd2
p ,a, r̂1, ..., r̂m2 ∈ Zd1

p ;

- EncS(x)→ s0, ..., sw1
∈ Zd1

p , ŝ1, ..., ŝw2
∈ Zd2

p ;

such that s0 · a⊺ ̸= 0, and if we substitute

ŝi′ : ŝi′ sibj : siBj α : a⊺ r̂k′ : r̂⊺k′ rkbj : Bjr
⊺
k,

for i ∈ [w1], i
′ ∈ [w2], j ∈ [n], k ∈ [m1], k

′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.
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Similarly, a PES satisfies the (d1, d2)-co-selective symbolic security property
if there exist EncB,EncR,EncS that satisfy the above properties but where EncB
and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for some d′1, d′′1 ≤ d1 and d′2, d

′′
2 ≤ d2.

Agrawal and Chase [AC17b] prove that any PES satisfying the (d1, d2)-symbolic
property can be transformed in a fully secure predicate encryption scheme.

In [Att19], Attrapadung defines a slightly stronger version of the symbolic prop-
erty, called Sym-Prop+, which additionally requires that a = 1d1

1 .

4.3.2 Perfect master-key hiding
In some works [Att14a, Att16], the information-theoretic security notion of perfect
master-key hiding is used to achieve security under non-parametrized assumptions
such as SXDH (Definition 3.15). As the name suggests, this security notion requires
that the master-key α is information-theoretically hidden, i.e., the distributions of the
keys and ciphertexts are identical for each choice of the master-key. Intuitively, this
ensures that the attacker cannot determine which master-key α was used by observing
the key and ciphertext distributions.

Definition 4.3: Perfectly master-key hiding (PMH) [Att16]

A pair encoding scheme Γ = (Param, EncKey, EncCt, Pair) for a predicate
family P : X × Y → {0, 1} is perfectly master-key hiding if, for all p, par, x ∈ X
and y ∈ Y with P (x, y) = 0, we have that the following distributions are identical:

{k(α, r, r̂,b, y), c(s, ŝ,b, x)} and {k(0, r, r̂,b, y), c(s, ŝ,b, x)},

where all variables α, r, r̂, s, ŝ,b are taken uniformly at random from Zp.

Attrapadung [Att16] and Agrawal and Chase [AC16] prove that any pair encoding
scheme that is perfectly master-key hiding can be converted to a fully secure predicate
encryption scheme. The resulting scheme is then secure under a static assumption
such as SXDH.

4.3.3 Examples of security proofs
Perfect master-key hiding. We give a proof of perfect master-key hiding for Wat11
(Construction 4.1), based on the proofs in [Att14a, Att14b, §9.1]. We also show that
the PES for RW13 is not perfectly master-key hiding, which is based on the proofs in
[Att14a, Att14b, §7.1]
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Lemma 4.1

The PES in Construction 4.1 is perfectly master-key hiding.

Proof. We show that α is information-theoretically hidden by rb. Suppose A ̸|= S.
Then, by Definition 2.5, we can find w = (w1, ..., wn2

) ∈ Zn2
p with w1 = 1, such that

for all j ∈ Υ = {j ∈ [n1] | ρ(j) ∈ S}, it holds that
∑

k∈[n2]
Aj,kwk = 0. Hence, for all

j ∈ Υ, we have ∑
k∈[n2]

Aj,kvk =
∑

k∈[n2]

Aj,k(vk + zwk),

where v1 = sb and z ∈R Zp. Because we cannot distinguish the left-hand side from the
right, sb is information-theoretically hidden. For all j ∈ [n1] \ Υ, we have that bρ(j)
only occurs in the ciphertext encoding, and thus, sjbρ(j) information-theoretically
hides λj . Because sb is hidden and s is not, we know that b is hidden. Therefore,
α+ rb hides α. ⊓⊔

Lemma 4.2

The PES in Construction 4.2 is not perfectly master-key hiding.

Proof. We show that α depends on the distribution of the key and ciphertext encod-
ings. Let A and S be such that A ̸|= S and Υ = {j ∈ [n1] | ρ(j) ∈ S} ̸= ∅. Then, from
sj(b0 + xρ(j)b1) and sj , we obtain b0 + xρ(j)b1. By extension, we obtain rb′ from katt
and ratt, and from rb′ and r, we obtain b′. We use b′ and sj to get λj , and as a result,
we also get sb. From s and sb, we acquire b, and from b, r and α + rb, we obtain
α. Hence, the distributions are dependent of α, and thus, the PES is not perfectly
master-key hiding. ⊓⊔

Symbolic property. We give symbolic property proofs for all PESs in Construc-
tions 4.1 ,4.2 and 4.3, based on the proofs in [AC17b, AC17c, §B]. Note, however,
that we have improved the co-selective proof for the [AC17b] PES (Construction 4.3).

Lemma 4.3

The PESs in Constructions 4.1 and 4.3 satisfy Sym-Prop.

Proof. For the proof of the selective symbolic property, we define τ as in Con-
struction 4.3 for Construction 4.1 as well, set d1 = m, d2 = n2, and

- EncB(A): We set B = 1d1×d2
1,1 , and

{
Batt = −

∑
j∈ρ−1(att),k∈[n2]

Aj,k1
d1×d2

τ(j),k

}
att∈U

.
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- EncR(A,S): Let w = (1, w2, ..., wn2) ∈ Zn2
p be the vector orthogonal to all

j ∈ Υ (Definition 2.5). We set a = 1d1
1 , and r = −

∑
k∈[n2]

wk1
d2

k .

- EncS(A): We set s = 1d1
1 , {vk = 1

d2

k }k∈[n2]. Further, we set {sj = 1d1

τ(j)}j∈[n1]

(for Construction 4.1) and {sl = 1d1

l }l∈[m] (for Construction 4.3).

For the co-selective symbolic property proof, we set d1 = 1 and d2 = 1, and

- EncB(S): We set B = 1, {Batt = 0}att∈S and {Batt = −1}att∈U\S .

- EncR(S): We set a = 1, and r = −1.

- EncS(A,S): Let w be the vector orthogonal to all j ∈ Υ (Definition 2.5). We set
s = w1 and {vk = wk}k∈[2,n2]

, and set
{
sj =

∑
k∈[n2]

Aj,kwk

}
j∈[n1]

(for Con-

struction 4.1) and
{
sl =

∑
j∈τ−1(l),k∈[n2]

Aj,kwk

}
l∈[m]

(for Construction 4.3).

Hence, the two PESs satisfy Sym-Prop. ⊓⊔

To illustrate the simplicity of verifying a symbolic property proof, we verify the
proof of the selective property for Construction 4.1. To this end, we have to verify
that a · s⊺ = 1d1

1 · (1
d1
1 )⊺ ̸= 0 and that the polynomials k0, katt and cj evaluate to 0

when the variables are replaced by the vectors and matrices. For k0, we have:

k0 = α+ rb = 1d1
1 −

∑
k∈[n2]

wk1
d1×d2
1,1 1

d2

k = 1d1
1 − 1d1

1 = 0d1 .

Note that writing each matrix as a sum of matrices in which only one entry is non-zero
simplifies the computations. For example,

∑
k∈[n2]

wk1
d1×d2
1,1 1

d2

k is computed easily by

first observing that wk1
d1×d2
1,1 1

d2

k = 0d1 for all k ̸= 1. Similarly, we verify that

katt = rbatt = −
∑

k∈[n2]

wk1
d2

k

− ∑
j∈ρ−1(att),k′∈[n2]

Aj,k′1d1×d2

τ(j),k′


=

∑
j∈ρ−1(att),k∈[n2]

Aj,kwk1
d1

τ(j) =
∑

j∈ρ−1(att)

Ajw
⊺1d1

τ(j) = 0d1 ,

and for cj , we have

cj = λj + sjbρ(j) = Aj,1sb+
∑

k∈[2,n2]

Aj,kvk + sjbρ(j)

= Aj,11
d1
1 1d1×d2

1,1 +
∑

k∈[2,n2]

Aj,k1
d2

k + 1d1

τ(j)

− ∑
j′∈ρ−1(ρ(j)),k′∈[n2]

Aj′,k′1d1×d2

τ(j′),k′
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=
∑

k∈[n2]

Aj,k1
d2

k −
∑

k∈[n2]

Aj,k1
d2

k = 0d2 .

Lemma 4.4

The PES in Construction 4.2 satisfies Sym-Prop.

Proof. For the proof of the selective symbolic property, we set d1 = n1 + 1,
d2 = (n1 + 1)n2. For simplicity of notation, we write the indices in [d2] as a tuple
(1, k) or (2, j, k) (with j ∈ [n1], k ∈ [n2]) such that it represents a unique integer in
[d2]. For the indices in [d1], we start counting at 0.

- EncB(A): We set

B = 1d1×d2

0,(1,1), B′ =
∑

j∈[n1],k∈[n2]

Aj,k1
d1×d2

j,(1,k),

B1 =
∑

j∈[n1],k∈[n2]

Aj,k1
d1×d2

j,(2,j,k), B0 = −
∑

j∈[n1],k∈[n2]

Aj,kxρ(j)1
d1×d2

j,(2,j,k).

- EncR(A,S): Let w be the vector orthogonal to all Aj with j ∈ Υ (Defini-
tion 2.5), and let Υ = [n1] \Υ. We set

r =
∑

k∈[n2]

wk1
d2

(1,k), ratt =
∑

j∈Υ,k∈[n2]

wk1
d2

(2,j,k)

xρ(j) − xatt
, a = w11

d1
0

- EncS(A): We set s = 1d1
0 ,

{
sj = −1d1

j

}
j∈[n1]

, vk = 1
d2

(1,k).

For the proof of the co-selective symbolic property, we set d1 = d2 = |S|+1, and

- EncB(S): We set

B = 1d1×d2
0,0 , B′ = 1d1×d2

0,0 ,

B1 = −
∑
att∈S

1d1×d2
att,att, B0 =

∑
att∈S

xatt1
d1×d2
att,att − 1d1×d2

0,att .

- EncR(S): We set r = 1
d2

0 , ratt = 1
d2

att, a = 1d1
0 .
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- EncS(A,S): Let w (with w1 = 1) be the vector orthogonal to all Aj with j ∈ Υ
(Definition 2.5). We set

s = 1d1
0 ,

{
sj = −Ajw

⊺

(
1d1
0 +

∑
att∈S

1d1
att

xatt − xρ(j)

)}
j∈[n1]

, vk = wk1
d2

0 .

Note that, for ρ(j) ∈ S, we have that sj = 0d1 , because Ajw
⊺ = 0.

Similarly as in [AC17c], it follows that all polynomials evaluate to 0. Hence, the PES
satisfies Sym-Prop. ⊓⊔

4.4 The AC17 generic compiler in a nutshell
Arguably the most powerful generic compiler for full security is the compiler given by
Agrawal and Chase [AC17b], which transforms any symbolically secure PES into a
fully secure PE. Agrawal and Chase also prove that any scheme that cannot be trivially
broken is symbolically secure, meaning that any scheme that can be abstracted to a
PES conform Definition 4.1 that is e.g., selectively secure also implies a fully secure
scheme in the AC17 framework. Furthermore, in an earlier work [AC16], Agrawal
and Chase show that any scheme that is perfectly master-key hiding results in a fully
secure scheme with the same compiler, under a more standard, non-parametrized
assumption such as the SXDH assumption (Definition 3.15).

The generic compiler by Agrawal and Chase [AC17b] additionally takes dual sys-
tem groups as input. Dual system groups (DSG) were first introduced by Chen and
Wee [CW13, CW14a], and later improved on by Chen, Gay and Wee [CGW15] and
Agrawal and Chase [AC16]. DSGs are pairing-based groups that systematize and
generalize the dual system encryption techniques (Section 2.6.2) that are often used
to prove full security of ABE. As a result, these groups satisfy certain correctness and
security properties that can be modularly used in such proofs. They considerably
simplify the design of fully secure schemes in prime-order groups.

The most efficient instantiation of the dual system groups in the AC17 compiler
relies on the SXDH assumption [CW14a]. The schemes instantiated under these
DSGs are roughly a factor 2 more costly than their selectively secure counterparts.
For example, the common variables b = (b1, ..., bn) are mapped to group elements
[b1]G, ..., [bn]G, where bi are pairs. For the other variables, the maps are more intri-
cate. To illustrate the complexity of such constructions compared to their selectively
secure counterparts, we give an example. In particular, we give the instantiation of
RW13, for which we gave a PES in Construction 4.2, in these groups below. We
refer to [CW14a] and [AC17b] for a clear description of the groups and how they are
instantiated in the AC17 compiler.
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Construction 4.4: A fully secure variant of RW13 (RWAC)

The ciphertext-policy attribute-based encryption scheme by Rouselakis and Wa-
ters [RW13] is defined in the Agrawal-Chase framework, using the prime-order
dual system groups for SXDH in [CW14a], as follows.

- Setup(λ): Taking as input the security parameter λ, the setup generates
three groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and
chooses a pairing e : G×H→ GT . The setup also defines the universe of at-
tributes U = Zp. It then generates random integers α1, α2, d1, d2, d3, d4, d5,
bi, b0,i, b1,i, b

′
i ∈R Zp for all i ∈ {1, 2, 3}, such that d1d4 ̸= d2d3. It outputs

MSK = (α1, α2, d1, d2, d3, d4, d5, bi, b0,i, b1,i, b
′
i) as its master secret key and

publishes the master public key as

MPK = (g, h,A = e(g, h)α1d1+α2d2 , {gi = gdi , Bi = gb1di+b3di+2 ,

{Bl,i = gbl,1di+bl,3di+2}l∈{0,1}, B
′
i = gb

′
1di+b′3di+2}i∈{1,2}).

- KeyGen(MSK,S): On input a set of attributes S, the algorithm generates
random integers r, ratt ∈R Zp for each att ∈ S, letting xatt ∈ Zp denote
the representation of att in Zp and computes the secret key as

SKS = ({Ki = hαi−rb̄i ,K ′
1 = hrd4d6 ,K ′

2 = h−rd3d6 ,

K1,att,i = h−ratt(b̄1,ixatt+b̄0,i)−rb̄′i ,

K2,att,1 = hrattd4d6 ,K2,att,2 = h−rattd3d6}i∈{1,2},att∈S),

where for l ∈ {0, 1}, we have d6 = d5

d1d4−d2d3
and

b̄1 = d6(b1d4 − b2d2), b̄2 = d6(−b1d3 + b2d1),

b̄l,1 = d6(bl,1d4 − bl,2d2), b̄l,2 = d6(−bl,1d3 + bl,2d1),

b̄′1 = d6(b
′
1d4 − b′2d2), b̄′2 = d6(−b′1d3 + b′2d1).

- Encrypt(MPK,A,M): A message M ∈ GT is encrypted under A = (A, ρ)
with A ∈ Zn1×n2

p and ρ : [n1]→ U by generating random integers s,si,vj ∈R
Zp for all i ∈ [n1] and j ∈ [2, n2], and computes the ciphertext as

CTA = (C = M ·As, {C ′
i = gsi , C1,i,j = B

Aj,1s
i g

λj

i (B′
i)

sj ,

C2,i,j =
(
B

xρ(j)

1,i B0,i

)sj
, C3,i,j = g

sj
i }i∈{1,2},j∈[1,n1]),

such that λj denotes the j-th entry of A · (0, v2, ..., vn2)
⊺.
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- Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
[1, n1] | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj =

(1, 0, ..., 0). Then the plaintext M is retrieved by computing

C/
∏

i∈{1,2}

(
e(C ′

i,Ki) · e(
∏

j∈Υ C
εj
1,i,j ,K

′
i)
∏

j∈Υ

(
e(C

εj
2,i,j ,K2,ρ(j),i) · e(C

εj
3,i,j ,K1,ρ(j),i)

))
.

4.4.1 Efficiency consideration: type conversion
The performance penalty of a factor 2 holds only for the case in which we instantiate
all key components in H and all ciphertext components in G (or vice versa). However,
as we will explain in more detail in Chapter 6, it might be desirable to use a different
distribution of the key and ciphertext components over the two groups. Furthermore,
using FDHs to achieve large-universeness (Section 2.5.5) inevitably requires a differ-
ent distribution of key and ciphertext components over the two source groups (see,
e.g., [AC17a, TKN20]). In these cases, we cannot use the most efficient instantia-
tion for dual-system groups from SXDH anymore, but rather require an instantiation
that incurs a performance penalty of a factor 3 compared to the selectively secure
counterparts of the schemes.

4.5 Towards a new compiler: generalizing PES
We will also propose a simpler generic compiler, which we will use throughout this
thesis. To this end, we first generalize the definitions of pair encodings and the sym-
bolic property, such that they can also capture multi-authority schemes. Furthermore,
we introduce functions that capture whether the encoding variables are produced as
a result of a full-domain hash or not, and in which groups they are going to be instan-
tiated in the compiler. Before this, we will first explain how the symbolic property
and selective security proofs are related.

4.5.1 How the symbolic property and selective security relate
As mentioned, the selective symbolic property and selective security are strongly
related in their approaches. More specifically, the evaluation of the polynomials ki
and ci to 0 after substituting the variables by the vectors and matrices is closely related
to the “canceling” part of the “program-and-cancel” strategy used in selective-security
proofs. The “programming” part of this proof strategy is related to the complexity
assumption that is used in the reduction. Concretely, various input parameters to
this complexity assumption are used to program the key and ciphertext components
associated with the common and non-lone variables. They are programmed in such a
way that the e(g, h)αs part of the scheme can be programmed by the “testing value”
of the complexity assumption. For example, consider the keys and ciphertexts of the
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Boneh-Boyen [BB04] scheme:

SK = (hα+r(b0+yb1), hr), CT = (M · e(g, h)αs, gs(b0+xb1), gs),

where x and y are identities, for which the associated PES is

k(α, r, (b0, b1)) = α+ r(b0 + yb1), c(s, (b0, b1)) = s(b0 + xb1).

It satisfies the selective symbolic property, because for x ̸= y, we can set

a = 1, r =
1

x− y
, b0 = −x, b1 = 1, s = 1.

Analogously, in the selective security proof, we can make a reduction to the decisional
bilinear Diffie-Hellman (DBDH) assumption, i.e., given gx, hx, gy, hy, gx, hz, determine
whether some testing value T is equal to e(g, h)xyz or not. We can program the master
public key, and the secret key and ciphertext components associated with the non-lone
variables in a similar way as in the symbolic property as follows:

e(g, h)α = e(g, h)ᾱ · e(g, h)axz, gb0 = gb̄0 · gb0z, gb1 = gb̄1 · gb1z,

hr = hr̄ · hrx, gs = gs̄ · gsy.

Then, the secret key and ciphertext components associated with the polynomials can
be programmed by using the inputs to the DBDH assumption and using that the
polynomials evaluate to 0 for those inputs that are not part of the assumption. For
example, the key component is simulated as follows:

hα+r(b0+yb1) = hᾱ+axz+(r̄+rx)(b̄0+b0z+y(b̄1+b1z))

= hᾱ+r̄(b̄0+b0z+y(b̄1+b1z))+rx(b̄0+yb̄1)︸ ︷︷ ︸
∆1

·haxz+rx(b0z+yb1z) = ∆1 · h(a+r(b0+yb1))xz︸ ︷︷ ︸
=1

,

such that ∆1 can be programmed from ᾱ, r̄, b̄0, b̄1 and the inputs to the DBDH
assumption, and the remainder associated with hxz (which cannot be part of the
assumption) cancels because the polynomial α + r(b0 + yb1) evaluates to 0 when
α, r, b0, b1 are substituted by a, r,b0,b1. Lastly, the blinding value is set to e(g, h)αs =
T · e(g, h)ᾱs · e(g, h)αs̄ · e(g, h)ᾱs̄.

For our compiler, we generalize this approach. Roughly, we associate the public-
key variables with (parallel instances of) z, all lone key variables with (parallel in-
stances of) xz, and all non-lone key variables with (parallel instances of) x, so that
the key polynomials are associated with (parallel instances of) xz. Similarly, we as-
sociate the lone ciphertext variables with (parallel instances of) yz and the non-lone
ciphertext variables with (parallel instances of) y, so that the ciphertext polynomi-
als are associated with (parallel instances of) yz. Finally, the blinding value should
be associated with xyz, so in the case that this is αs (as in the definition of PES),



4.5. Towards a new compiler: generalizing PES 91

we require that α and s only use xz and y (and no parallel instances) of the inputs
to the complexity assumption. Note that these parallel instances are related to the
choices of d1 and d2, e.g., we require d1 parallel instances of y to embed each entry of
the substitution vector for a non-lone ciphertext variable. In Section 4.6, we give an
assumption with such parallel instances that holds in the generic group model.

4.5.2 Generalizing the definition of pair encoding schemes
In order to cover a larger class of schemes, we also give a more general definition
of pair encoding schemes. Notably, decentralized schemes such as [LW11a, RW15]
cannot be covered by Definition 4.1. Consequently, we cannot benefit from the generic
security as well as the generic conversion techniques that the pair encodings framework
provides. Regardless, the proof techniques in [RW15] are strikingly similar to the
proof techniques in works in the single-authority setting [Wat11, RW13]. We use
this observation to define our more general definitions of pair encoding schemes and
the symbolic property. Concretely, for the definition of pair encodings, we extend
the master-key α to multiple instances αi. We also explicitly include ciphertext
polynomials that will be instantiated in the target group, and write the blinding
value used to mask M in the scheme as a polynomial instead of fixing it to be αs.

Definition 4.4: Generalized pair encoding schemes (GPES)

A generalized pair encoding scheme for a predicate P : X × Y → {0, 1} and
prime number p, with optionally some additional parameters par, is given by
four deterministic polynomial-time algorithms as described below.

- Param(par)→ (nα, nb,α,b): On input par, the algorithm outputs nα, nb ∈
N that specify the number of master key variables and common variables,
respectively, which are denoted as α = (α1, ..., αnα

) and b = (b1, ..., bnb
),

respectively.

- EncKey(y, p,α,b) → (m1,m2,k(r, r̂,α,b, y)): On input p ∈ N, y ∈ Y, α
and b, this algorithm outputs a vector of polynomials k = (k1, ..., km3

),
with m3 ∈ N, defined over non-lone variables r = (r1, ..., rm1

) and lone
variables r̂ = (r̂1, ..., r̂m2

). Specifically, the polynomial ki is expressed as

ki =
∑

j∈[nα]

δi,jαj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1],k∈[nb]

δi,j,krjbk,

for all i ∈ [m3], where δi,j , δ̂i,j , δi,j,k ∈ Zp.

- EncCt(x, p,α,b) → (w1, w2, w
′
2, cM , c(s, ŝ,b, x), c′(s, s̃,α, x)): On input

p ∈ N, x ∈ X , α and b, this algorithm outputs a blinding variable cM
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and two vectors of polynomials c = (c1, ..., cw3) and c′ = (c′1, ..., c
′
w4

), with
w3, w4 ∈ N, defined over non-lone variables s = (s1, s2, ..., sw1), lone vari-
ables ŝ = (ŝ1, ..., ŝw2

) and special lone variables s̃ = (s̃1, ..., s̃w′
2
). Specifi-

cally, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[nb]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp, the polynomial c′i is expressed as

c′i =
∑

j∈[nα],j′∈[w1]

η′i,j,j′αjsj′ +
∑

j∈[w′
2]

η̂′i,j s̃j ,

for all i ∈ [w4], where η′i,j,j′ , η̂
′
i,j ∈ Zp, and the variable cM is expressed as

cM =
∑

j∈[w′
2]

ζj s̃j +
∑

j∈[nα],j′∈[w1]

ζj,j′αjsj′ ,

where ζj , ζj,j′ ∈ Zp.

- Pair(x, y, p)→ (e,E,E): On input p ∈ N, x ∈ X , and y ∈ Y, this algorithm
outputs a vector e ∈ Zw4

p and two matrices E and E of sizes w1 ×m3 and
w3 ×m1, respectively.

A PES is correct for every p,par, x ∈ X and y ∈ Y such that P (x, y) = 1, it
holds that ec′⊺ + sEk⊺ + cEr⊺ = cM .

4.5.3 Special symbolic property for GPES
To generalize the symbolic property, we also need to find proper substitutions for the
new master-key variables and the ciphertext encodings c′. In addition, we need to be
able to account for static corruption of certain variables.

For the master-key variables, we first observe that these occur as lone variables in
the key encodings and as common variables in the ciphertext encodings c′, meaning
that we only have to be able to multiply them with non-lone ciphertext variables.
It is thus sufficient to substitute the master-key variables with vectors (rather than
matrices, like the common variables). Because the non-lone ciphertext variables are
substituted by vectors of length d1, we therefore also substitute the master-key vari-
ables by vectors of length d1, so that their inner product yields an integer. In addition
to products of master-key variables and non-lone variables, the ciphertext encodings
consist of special lone variables, which also need to be substituted by integers.

To ensure that we can replace e(g, h)cM with the testing value T , we additionally
require that all master-key variables and non-lone ciphertext variables that occur in
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cM are equal to 1d1
1 . In this way, the products of the simulated components do not

yield any parallel instances of xyz.
Finally, to support corruption, we need to ensure that none of the corrupted secret

values (such as those related to the master-keys or the lone key variables) contains any
parameters that cannot be programmed from the inputs to the complexity assump-
tion. We ensure this by setting their corresponding substitution vectors/matrices to
all-zero. This yields the following definition.

Definition 4.5: Special selective symbolic property for GPES

A GPES Γ = (Param, EncKey, EncCt, Pair) for a predicate P : X ×Y → {0, 1}
satisfies the (d1, d2)-selective symbolic property for positive integers d1 and d2
if there exist deterministic polynomial-time algorithms EncB, EncS, and EncR
such that for all p,par, and x ∈ X and y ∈ Y with P (x, y) = 0, and optionally,
there exist a ⊊ [nα], b ⊊ [nb] (which we call corruptable variables), such that we
have that

- EncB(x, a, b)→ a1, ...,anα ∈ Zd1
p ,B1, ...,Bnb

∈ Zd1×d2
p ;

- EncR(x, y, a, b)→ r1, ..., rm1
∈ Zd2

p , r̂1, ..., r̂m2
∈ Zd1

p ;

- EncS(x, a, b)→ s1, ..., sw1
∈ Zd1

p , ŝ1, ..., ŝw2
∈ Zd2

p , s̃1, ..., s̃w′
2
∈ Zp;

such that, if we substitute

ŝi′ : ŝi′ s̃i′′ : s̃i′′ sibj : siBj αl : a
⊺
l r̂k′ : r̂⊺k′ rkbj : Bjr

⊺
k,

for i ∈ [w1], i
′ ∈ [w2], i

′′ ∈ [w′
2], j ∈ [nb], k ∈ [m1], k

′ ∈ [m2], l ∈ [nα] in all the
polynomials of k, c and c′ (output by EncKey and EncCt, respectively), they
evaluate to 0. Furthermore,

• for all j ∈ [nα] \ a, j′ ∈ [w1] with ζj,j′ ̸= 0, we have that aj = sj′ = 1d1
1 ;

• for j ∈ [w′
2] with ζj ̸= 0, we have that s̃j = 1;

• for j ∈ a, we have aj = 0d1 ;

• and for j ∈ b, we have that Bj = 0d1×d2 .

Remark 4.1

PESs can be captured under our definition of generalized PES. That is, we can
simply set nα = 1, w2, w4 = 0 and CM = αs. Furthermore, most existing PESs
(e.g., [AC17b, Att19]) satisfy the special (d1, d2)-selective symbolic property,
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because they satisfy the symbolic property, and a = s = 1d1
1 . Therefore, these

can be securely instantiated in the selective-security setting with our compiler.

4.5.4 Distribution of the encodings
We also give an explicit definition for the distribution of the encodings over the two
source groups G and H, and the target group GT when they are instantiated in our
new compiler. Such a distribution should ensure that the correctness of the GPES is
preserved, such that the correctness of the PE scheme is also guaranteed. In particular,
for the correctness of the decryption, we require that each pair of key and ciphertext
encodings that needs to be paired has one encoding in G and one in H. Furthermore,
to ensure that encryption can be performed correctly, the master public keys required
in computing a ciphertext encoding element need to be in the same group.

Definition 4.6: Distribution of the encodings over G, H and GT

Let Γ = (Param, EncKey, EncCt, Pair) be a GPES for a predicate P : X ×Y →
{0, 1} and let G, H and GT be three groups. Let E denote the set of possible
encodings and non-lone variables that can be sampled with Param, EncKey and
EncCt, and let E ′ ⊆ E denote its subset containing the master key variables
α and ciphertext encodings c′. Then, we define D : E → {G,H,GT } to be the
distribution of Γ over G, H and GT such that the correctness of the encoding
is preserved. This is the case, if for every p,par, x ∈ X and y ∈ Y such that
P (x, y) = 1, it holds that

• D(E ′) = {GT }, and D(E \ E ′) = {G,H};

• for all i ∈ [m3], j ∈ [w1], if D(ki) = D(sj), then Ej,i = 0;

• for all i ∈ [w3], j ∈ [m1], if D(ci) = D(rj), then Ei,j = 0;

• for all k ∈ [nb] for which there exist some i ∈ [w3], j ∈ [w1] with ηi,j,k ̸= 0,
we have D(bk) = D(ci).

4.5.5 Full-domain hashes and random oracles
Sometimes, some of the variables are generated implicitly by a full-domain hash
(FDH). For example, this is done to support large universes (see Section 2.5.5) or
to link the keys together in decentralized schemes (see Section 2.8.4). Our compiler
and proof can easily support the use of full-domain hashes. In that case, the secu-
rity proof requires the hashes to be modeled as random oracles. In particular, the
random oracles answer the queries exactly in the way that it does in a proof where
the variable is not generated by an FDH. To capture such random oracle queries in
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the security proof, we also define a function F that maps each encoding variable to a
natural number, indicating which random oracle is queried.

Definition 4.7: FDH-generated encoding variables

Let Γ = (Param, EncKey, EncCt, Pair) be a GPES for a predicate P : X ×Y →
{0, 1}. Let E denote the set of possible encodings and non-lone variables that
can be sampled with Param, EncKey and EncCt. Then, we define F : E → N
to be the map that assigns whether the encoding variables are generated by an
FDH or not. If not, then the encoding variable is mapped to 0. Otherwise, it is
mapped to any integer larger than 0. When the FDH is instantiated, it expects
the index of the encoding variable as input, e.g., if F(batt) = 1, then H1 expects
att as input in the scheme, and outputs [batt]D(batt).

Furthermore, to ensure correctness of the scheme, we require the distribution over
the two source groups to be such that, for any common variable bk that is provided
implicitly by a hash, and each associated encoding ki and ci, it holds that they are
placed in the same group. Similarly, we can define such a restriction for the other
variables. Furthermore, if a non-lone variable and a common variable occur together in
a product in one of the polynomials, then it cannot be the case that both are generated
by an FDH. (It is possible to generate at most one with an FDH, by computing, e.g.,
H(att)r or H(GID)batt , but not both.) We formalize these restrictions as follows.

Definition 4.8: Correctness of variables generated by an FDH

Let D be as in Definition 4.6. Then, for any common variable bk with F > 0
(i.e., generated implicitly by the full-domain hash), it holds that:

• for all i ∈ [m3], if D(ki) ̸= D(bk), then δi,j,k = 0 for all j ∈ [m1];

• for all i ∈ [w3], if D(ci) ̸= D(bk), then ηi,j,k = 0 for all j ∈ [w1].

For any non-lone variable rj or sj with F(rj),F(sj) > 0, it holds that:

• for all i ∈ [m3], if D(ki) ̸= D(rj), then δi,j,k = 0 for all k ∈ [n];

• for all i ∈ [w3], if D(ci) ̸= D(sj), then ηi,j,k = 0 for all k ∈ [n];

• for all i ∈ [m3], k ∈ [n], if δi,j,k ̸= 0, then F(bk) = 0;

• for all i ∈ [w3], k ∈ [n], if ηi,j,k ̸= 0, then F(bk) = 0.
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Furthermore, for each i ∈ N with i > 0, we require that all the encodings that
are mapped to it, i.e., F−1(i), are either all common variables, or all non-lone
key variables, or all non-lone ciphertext variables.

4.5.6 Our complexity assumption
The last ingredient to our compiler is the complexity assumption. The assumption
that we use to prove security generically is loosely based on the q-type assumptions
used in works that prove selective security, e.g., [RW13, §A]. Roughly, this assumption
creates several parallel instances of an assumption similar to the DBDH assumption,
augmented with some additional inputs.

Definition 4.9: The (d1, d2)-parallel DBDH assumption

Let λ be the security parameter. Let e : G × H → GT be a pairing over three
groups G,H,GT of prime order p, and let g ∈ G, h ∈ H be two generators.
The challenger generates x, y, z, ci, c

′
j ∈R Zp for all i ∈ [2, d1], j ∈ [2, d2], sets

c1 = c′1 = 1 and outputs for all G′ ∈ {G,H}:

[xci]G′ , for all i ∈ [d1]
[
xzci
ci′ c

′
j

]
G′

, for all i, i′ ∈ [d1], i ̸= i′, j ∈ [d2][
yc′j
]
G′ , for all j ∈ [d2]

[
yzc′j
cic′j′

]
G′

, for all i ∈ [d1], j, j
′ ∈ [d2], j ̸= j′[

z
cic′j

]
G′

, for all i ∈ [d1], j ∈ [d2].

By setting c1 = c′1 = 1, [x]G′ , [y]G′ , [z]G′ are included in these terms. The chal-
lenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0 and T = e(g, h)xyz

if β = 1. The attacker outputs a guess β′ for β. The advantage of the attacker is
defined as Adv(d1,d2)-pDBDH = |Pr[β′ = β]− 1

2 |. The (d1, d2)-parallel DBDH as-
sumption ((d1, d2)-pDBDH) holds if all polynomial-time attackers have at most
a negligible advantage, i.e., Adv(d1,d2)-pDBDH ≤ negl(λ).

We prove the following lemma similarly as in [Wat11, RW13]. The proof can be
found in the full version of this paper [Ven23b]).

Lemma 4.5

The (d1, d2)-parallel DBDH assumption holds in the GGM (Section 2.4.5).
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Remark 4.2

Interestingly, for d1 = d2 = 1, the (d1, d2)-parallel DBDH assumption is equiv-
alent to the DBDH assumption (Definition 3.16). An advantage of this is
that, if the GPES is such that the special selective symbolic property holds for
d1 = d2 = 1, we automatically obtain an instantiation of a scheme whose security
relies on DBDH. In contrast, the q-type assumption on which the Agrawal-Chase
compiler relies does not satisfy this property.

4.6 Our generic compiler
Our new generic compiler instantiates the GPES into the pairing-friendly groups G,H
and GT in the most obvious way. Roughly, the master public key, the secret keys and
the ciphertexts have the following form:

MPK = (e(g, h)α, g′b), SK = (g′r, g′k(r,̂r,α,b,y)),

CT = (M · e(g, h)cM , g′c(s,̂s,b,x), e(g, h)c
′(s,̃s,α,x)),

(where g′ indicates that either g′ = g or g′ = h for each entry of the vector in the
exponent). More concretely, we define our generic compiler as follows.

Definition 4.10: Our generic compiler

Let Γ = (Param, EncKey, EncCt, Pair) be a GPES for a predicate P : X ×Y →
{0, 1}, let e : G×H→ GT be a pairing over three groups G,H,GT of prime order
p, let g ∈ G, h ∈ H be two generators and let D : E → {G,H} be a distribution of
the encodings over the two source groups G and H, and let F : E → N be the map
that maps the encoding variables to natural numbers. For each i ∈ F(E) \ {0},
let Hi : {0, 1}∗ → G′ denote a full-domain hash modeled as a random oracle,
where G′ = D(F−1(i)) is the group to which the associated encoding variables
are mapped. Then, we define the predicate encryption scheme for predicate P
as follows:

- Setup(λ,par): On input the security parameter λ and parameters par, this
algorithm generates (nα, nb,α,b)← Param(par), sets MSK = (α, {bi | i ∈
[nb] ∧ F(bi) = 0}) as the master secret key, and outputs

MPK = (A = {[αi]GT
}i∈[nα], {[bi]D(bi) | i ∈ [nb] ∧ F(bi) = 0})

as the master public key. The global parameters are p, e,G,H,GT , g, h.
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- KeyGen(MSK, y): On input the master secret key MSK and some y ∈
Y, this algorithm generates (m1,m2,k(r, r̂,α,b, y)) ← EncKey(y, p), and
outputs the secret key

SKy = (y, {[rj ]D(rj) | j ∈ [m1] ∧ F(rj) = 0}, {[ki]D(ki)}i∈[m3])

- Encrypt(MPK, x,M): On input the master public key MPK, x ∈ X and
message M ∈ GT , this algorithm generates (w1, w2, w

′
2, cM , c(s, ŝ,b, x),

c′(s, s̃,α, x))← EncCt(x, p), and outputs the ciphertext

CTx = (x,M · e(g, h)cM ,

{[sj ]D(sj) | j ∈ [w1] ∧ F(sj) = 0}, {[ci]D(ci)}i∈[w3], {[c
′
i]GT
}i∈[w4]).

- Decrypt(MPK,SKy,CTx): On input the master public key MPK, the se-
cret key SKy, and the ciphertext CTx, if P (x, y) = 1, then it first obtains
(E,E)← Pair(x, y, p), sets

P = {(sj , ki,Ej,i) | i ∈ [m3], j ∈ [w1],Ej,i ̸= 0 ∧D(sj) = G}
∪ {(ki, sj ,Ej,i) | i ∈ [m3], j ∈ [w1],Ej,i ̸= 0 ∧D(sj) = H}
∪ {(rj , ci,Ei,j) | i ∈ [w3], j ∈ [m1],Ei,j ̸= 0 ∧D(rj) = G}
∪ {(ci, rj ,Ei,j) | i ∈ [w3], j ∈ [m1],Ei,j ̸= 0 ∧D(rj) = H},

and then retrieves∏
i∈[nα]

[c′i]
ei

GT

∏
(l,r,e)∈P

e([l]G, [r]H)
e = e(g, h)ec

′⊺+sEk⊺+cEr⊺ = e(g, h)cM .

The correctness of the scheme is preserved under the correctness of the GPES and
the preservation-of-correctness property of the distribution (Definition 4.6).

Theorem 4.1

If Γ satisfies the special symbolic property (Definition 4.5), and the (d1, d2)-
parallel DBDH assumption holds in the groups G, H, and GT , then the PE
scheme in Definition 4.10 is selectively secure. (If we allow corruption of vari-
ables, the scheme is also secure under static corruption of variables.)

Proof. Suppose some attacker APE,IND-CPA exists that can break the scheme in Defi-
nition 4.10 with non-negligible advantage ε. We show that it can be used to construct
an attacker A(d1,d2)-pDBDH with non-negligible advantage in a security game with
challenger C(d1,d2)-pDBDH as well.
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- Initialization phase: Attacker APE,IND-CPA commits to x∗ ∈ X , and cor-
ruptable a ⊊ [nα] and b ⊊ [nb] as in the special symbolic property, and sends
those to challenger CPE,IND-CPA. (Note that a = b = ∅, if we do not allow
corruption.) Let C(d1,d2)-pDBDH be a challenger that sends the terms of the
assumption in Definition 4.9, where d1, d2 as in the special symbolic property
(Definition 4.5). Let EncB,EncR,EncS be the three algorithms that generate
the necessary substitutions for the variables in the encodings.

- Setup phase: Challenger CPE,IND-CPA runs ({ai,Bj}i∈[nα],j∈[nb])← EncB(x∗,
a, b) to obtain the necessary substitutions for the master public key MPK. It
constructs the master public key as

MPK =

{Aj = e(g, h)ᾱj ·
∏
i∈[d1]

e([x]ciG, [z]H)
(aj)i}j∈[nα]\a,[bk]D(bk) = [b̄k]D(bk) ·

∏
i∈[d1],j∈[d2]

[
(Bk)i,j

z

cic′j

]
D(bk)


k∈{k′∈[n]\b|F(bk′ )=0}

,

{Aj = e(g, h)ᾱj}j∈a,
{
[bk]D(bk) = [b̄k]D(bk)

}
k∈b

)
,

where ᾱ, b̄k ∈R Zp for all k ∈ [n]. Note that
[
(Bk)i,j

z
cic′j

]
D(bk)

can be generated

from the terms in the assumption by computing
[

z
cic′j

](Bk)i,j

D(bk)
.

- Random oracle query phase for Hi: If attacker APE,IND-CPA queries the
random oracle Hi the input corresponding to common variable bk (with F(bk) =
i), then it obtains (a1, ...,anα ,B1, ...,Bn)← EncB(x∗, a, b) and outputs

[bk]D(bk) =

[b̄k]D(bk) ·
∏

i∈[d1],j∈[d2]

[
(Bk)i,j

z
cic′j

]
D(bk)

if k ∈ [n] \ b

[b̄k]D(bk) if k ∈ b,

where b̄k ∈R Zp. If the oracle is queried implicitly for non-lone variable rj , it
runs (r1, ..., rm1 , r̂1, ..., r̂m2)← EncR(x∗, y, a, b) and outputs

[rj ]D(rj) = [r̄j ]D(rj) ·
∏
i∈[d1]

[(rj)ixci]D(rj),
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and if it is queried for non-lone variable sj , it runs (s1, ..., sw1 , ŝ1, ..., ŝw2) ←
EncS(x∗, a, b) and outputs

[sj ]D(sj) = [s̄j ]D(sj) ·
∏

j∈[d2]

[(sj)jyc
′
j]D(sj),

where r̄j , s̄j ∈R Zp.

- First query phase: Attacker APE,IND-CPA queries secret keys for y ∈ Y.
Challenger CPE,IND-CPA generates (r1, ..., rm1 , r̂1, ..., r̂m2) ← EncR(x∗, y, a, b)
and r̄j ∈R Zp for all j ∈ [m1] and programs the secret key as

SKy = (y, {[rj ]D(rj) = [r̄j ]D(rj) ·
∏
i∈[d1]

[(rj)ixci]D(rj)}j∈[m1], {[ki]D(ki)}i∈[m3]),

such that [ki]D(ki) = [
∑

j∈[nα] δi,jαj+
∑

j∈[m2]
δi,j r̂j+

∑
j∈[m1],k∈[n] δi,j,krjbk]D(ki)

is programmed by implicitly setting

[αj ]D(αj) = [ᾱj ]D(αj) ·
∏

j∈[d2]

[
(aj)j

xz

c′j

]
D(αj)

for all j ∈ [nα],

[r̂j ]D(r̂j) =
∏

j∈[d2]

[
(r̂j)j

xz

c′j

]
D(r̂j)

for all j ∈ [d1],

[rjbk]D(bk) = [r̄jbk]D(bk) · [rj b̄k]D(bk) ·
∏

i,i′∈[d1],j∈[d2]

[
(rj)i′(Bk)i,j

zxci′

cic′j

]
D(bk)

for all j ∈ [d2], such that the only terms we cannot program with the terms of
the (d1, d2)-pDBDH assumption are those with xz

c′j
for all j ∈ [d2], which includes

the rightmost terms of [rjbk]D(bk) for i = i′, i.e.,

∏
i∈[d1],j∈[d2]

[
(Bk)i,j(rj)i

zxci
cic′j

]
D(bk)

=
∏

i∈[d1],j∈[d2]

[
(Bkr

⊺
j )j

xz

c′j

]
D(bk)

.

For these terms, it follows from the selective property that these are canceled
in the simulation of ki, because

ki =
∑

j∈[nα]

δi,jaj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,kBkr
⊺
j = 0d2 ,
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from which it follows that for all j ∈ [d2]: ∑
j∈[nα]

δi,j(aj)j +
∑

j∈[m2]

δ̂i,j(r̂j)j +
∑

j∈[m1],k∈[n]

δi,j,k(Bkr
⊺
j )j

 xz

c′j

=
∑

j∈[nα]

δi,j(aj)j
xz

c′j
+
∑

j∈[m2]

δ̂i,j(r̂j)j
xz

c′j
+

∑
j∈[m1],k∈[n]

δi,j,k(Bkr
⊺
j )j

xz

c′j
= 0.

Note that the rest of the terms can be programmed as follows:

[r̄jbk]D(bk) = [bk]
r̄j
D(bk)

, [rj b̄k]D(bk) = [rj ]
b̄k
D(bk)

,

∏
i,i′∈[d1],i ̸=i′,j∈[d2]

[
(rj)i′(Bk)i,j

zxci′

cic′j

]
D(bk)

=
∏

i,i′∈[d1],i ̸=i′,j∈[d2]

[
xzci′

cic′j

](rj)i′ (Bk)i,j

D(bk)

.

- Challenge phase: Attacker APE,IND-CPA sends two messages M0 and M1 of
equal length in GT to challenger CPE,IND-CPA. The challenger flips a coin, i.e.,
β ∈R {0, 1}, encrypts Mβ under x∗ and computes the following ciphertext CTx∗

to the attacker. First, it runs (s1, ..., sw1 , ŝ1, ..., ŝw2)← EncS(x∗, a, b), and it sets

{[sj ]D(sj) = [s̄j ]D(sj) ·
∏

j∈[d2]

[(sj)jyc
′
j]D(sj)}j∈[w1],

such that [ci]D(ci) = [
∑

j∈[w2]
ηi,j ŝj +

∑
j∈[w1],k∈[n] ηi,j,ksjbk]D(ci) can be pro-

grammed by implicitly setting

{[ŝj ]D(sj) =
∏
i∈[d1]

[
(̂sj)i

yz

ci

]
D(sj)

}j∈[w2],

[sjbk]D(ci) = [s̄jbk]D(ci) · [sj b̄k]D(ci) ·
∏

i∈[d1],j,j′∈[d2]

[
(sj)j′(Bk)i,j

yzc′j′

cic′j

]
D(bk)

.

Only the terms with yz
ci

(i.e., for j = j′) cannot be programmed from the terms
in the assumption, but are canceled in the simulation of [ci]D(ci), because

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjBk = 0d1 ,

from which it follows that, for all i ∈ [d1], we have(∑
j∈[w2]

ηi,j (̂sj)i +
∑

j∈[w1],k∈[n] ηi,j,k(sjBk)i

)
yz
ci
=
∑

j∈[w2]
ηi,j (̂sj)i

yz
ci
+
∑

j∈[w1],k∈[n] ηi,j,k(sjBk)i
yz
ci
= 0.
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The other terms can be programmed by computing

[s̄jbk]D(ci) = [bk]
s̄j
D(ci)

, [sj b̄k]D(ci) = [sj ]
b̄k
D(ci)

,

∏
i∈[d1],j,j′∈[d2],j̸=j′

[
(sj)j′(Bk)i,j

yzc′j′

cic′j

]
D(bk)

=
∏

i∈[d1],j,j′∈[d2],j ̸=j′

[
yzc′j′

cic′j

](sj)j′ (Bk)i,j

D(bk)

.

Then, [c′i]GT
can be programmed by implicitly setting s̃j = xyz, by using that

we can compute
[
xyz

c′
j′

c′j

]
GT

= e([xci]G ,

[
yzc′j
cic′j′

]
H
) for all j ̸= j′ ∈ [d2], and

c′i =
∑

j∈[nα],j′∈[w1]

η′i,j,j′αjs
⊺
j′ +

∑
j∈[w′

2]

η̂′i,j s̃j = 0.

Hence,

[c′i]GT
=

∏
j∈[nα],j′∈[w1]

[sj′ ]
η′
i,j,j′ ᾱj

GT
·

∏
j∈[nα],j′∈[w1]

[αj ]
η′
i,j,j′ s̄j′

GT

·
∏

j∈[nα],j′∈[w1],j,j′∈[d2]

[
(aj)j(sj′)j′yc

′
j′
xz

c′j

]η′
i,j,j′

GT

·
∏

j∈[w′
2]

[̃sxyz]
η̂′
i,j

GT

=
∏

j∈[nα],j′∈[w1]

[sj′ ]
η′
i,j,j′ ᾱj

GT
·A

η′
i,j,j′ s̄j′

j ·
∏

j,j′∈[d2],j̸=j′

[
xyz

c′j′

c′j

]η′
i,j,j′ (aj)j(sj′ )j′

GT


· [xyz]

∑
j∈[nα],j′∈[w1] η

′
i,j,j′ (aj)(sj′ )

⊺+
∑

j∈[w′
2] η̂

′
i,j s̃

GT
,

where [sj′ ]GT
can be computed from [sj′ ]D(sj′ )

. Furthermore, let J1 = {(j, j′) ∈
[nα]× [w1] | ζj,j′ ̸= 0} and J2 = {j ∈ [w2] | ζj ̸= 0}. Then, we let

C = Mβ ·
∏

(j,j′)∈J1

A
ζj,j′sj′
j

∏
j∈J2

e(g, h)ζj ŝj

= Mβ ·
∏

(j,j′)∈J1

[sj′ ]
ᾱjζj,j′

GT
·
∏

(j,j′)∈J1

[xyz]
ζj,j′

GT

∏
j∈J2

[xyz]
ζj
GT

= Mβ ·
∏

(j,j′)∈J1

[sj′ ]
ᾱjζj,j′

GT
· T

∑
(j,j′)∈J1

ζj,j′+
∑

j∈J2
ζj ,

which is well-formed if T = e(g, h)xyz. It outputs the ciphertext as

CT∗
x∗ = (x∗, C, {[sj ]D(sj)}j∈[w1], {[ci]D(ci)}i∈[w3], {[c

′
i]GT
}i∈[w4])
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- Second query phase: This phase is identical to the first query phase.

- Decision phase: Attacker APE,IND-CPA outputs a guess β′ for β. If β′ = β,
then attacker A(d1,d2)-pDBDH concludes that the ciphertext was well-formed.
Thus, it outputs that T = e(g, h)xyz, and otherwise, it outputs that T ∈R GT .

The probability that attacker A(d1,d2)-pDBDH guesses correctly when T = e(g, h)xyz

holds corresponds to the success probability of attacker APE,IND-CPA, i.e., ε + 1
2 . If

T ∈R GT holds, then attacker APE,IND-CPA guesses at random, and thus, attacker
A(d1,d2)-pDBDH also guesses at random. Hence, the advantage AdvA(d1,d2)-pDBDH

=

ε+ 1
2 −

1
2 = ε is non-negligible. ⊓⊔

4.6.1 The new generic compiler in the multi-authority setting
Although our regular compiler can also prove security of multi-authority schemes,
it does not explicitly consider multiple authorities. To convert the compiler to the
multi-authority setting, we need to split the setup into the global setup and the au-
thority setup, in which a subset of the parameters, associated with some authority, is
generated. Furthermore, the key generation should be fragmented across authorities,
meaning that it should be possible to split the key generation into independent parts.
For this to work properly in practice, any non-lone key variable that occurs across
multiple authorities needs to be generated by an FDH. By extension, for any such
non-lone variables, the substituted vector as in the (special) symbolic property often
depends on the entire y ∈ Y, rather than only the subset yA ⊆ y that is relevant for
one authority with identifier A. In this case, we require the static security model. For
the compiler in the multi-authority setting, we define the following two properties.

Definition 4.11: Independent encodings

Let Γ = (Param, EncKey, EncCt, Pair) be a GPES for a predicate P : X ×
Y → {0, 1}, and let F be the FDH-generated encoding assignment map (Defini-
tion 4.7). Let A1, ...,Anaut be naut ∈ N authorities, such that YAi ⊆ Y denotes
the set of predicates managed by Ai, which are disjoint, i.e., YAi ∩ YAj = ∅ for
all i ̸= j. The GPES has independent encodings, if the following holds:

• we can find maps Aα : [nα]→ [naut] and Ab : [nb]→ [naut], where we have
(nα, nb,α,b) ← Param(par). Let α|l = {αi | i ∈ A−1

α (l)} and b|l = {bi |
i ∈ A−1

b (l)} for all authorities Al;

• for all yGID = {yGID,Al
}l∈[naut], if we obtain (m1,l,m2,l,kl(r, r̂,α|l,b|l,

yGID,Al
)) ← EncKey(yGID,Al

, p) for all yGID,Al
, then it should hold that

running (m1,m2,k(r, r̂,α,b, yGID))← EncKey(yGID, p) yields k(r, r̂,α,b,
yGID)) that is equivalent to {kl(r, r̂,αl,bl, yGID,Al)}l∈[naut];
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• for all l ∈ [naut], let r|l ⊆ r and r̂|l ⊆ r̂ be the subsets of non-lone and
lone key variables for which kl has a non-zero coefficient. Then, for all
rj ∈ r for which l ̸= l′ exist such that rj ∈ r|l ∩ r|l′ , it should hold that
F(rj) > 0, and similarly, for r̂j ∈ r̂ with l ̸= l′ such that r̂j ∈ r|l ∩ r|l′ , we
have F(r̂j) > 0.

Then, we convert the generic compiler in Definition 4.10 to the multi-authority
setting as follows.

Definition 4.12: Our multi-authority compiler

Let Γ = (Param, EncKey, EncCt, Pair) be a GPES for a predicate P : X ×Y →
{0, 1} as in Definition 4.10, with the additional property that its encodings are
independent (Definition 4.11). Then, in the multi-authority setting, almost all
algorithms are the same as in Definition 4.10, except that we replace the Setup
and KeyGen by:

- GlobalSetup(λ,par): On input the security parameter λ and parameters
par, this algorithm outputs the global parameters GP = (p, e,G,H,GT ,
g, h).

- AuthoritySetup(GP): On input the global parameters GP, this probabilis-
tic algorithm outputs the authority identifier Al, sets MSKAl

← (α|l, {bi |
bi ∈ b|l ∧ F(bi) = 0}), and outputs

MPK = (A = {[αi]GT
| αi ∈ α|l}, {[bi]D(bi) | bi ∈ b|l ∧ F(bi) = 0})

as the master public key. Note that α|l and b|l are as in Definition 4.11.

- KeyGen(Al,MSKAl
,GID, yGID,Al

): On input the master secret key MSKA
of authority Al and some yGID,Al

∈ YAl
for identifier GID, this algorithm

generates (m1,l,m2,l,kl(r|l, r̂|l,α|l,b|l, yGID,Al
))← EncKey(yGID,Al

, p), and
outputs the secret key as

SKGID,Al,yGID,Al
= (yGID,Al

, {[rj ]D(rj) | rj ∈ r|l ∧ F(rj) = 0},
{[ki,l]D(ki,l)}i∈[m3,i]).

The security proof for the multi-authority compiler is almost identical to the proof
for Theorem 4.1 (see the full version [Ven23b]). In particular, we can first prove
(from the independent encodings property and in the static-security model) that the
public and secret keys, and ciphertexts produced by the multi-authority compiler are
indistinguishable from the keys and ciphertexts produced by the regular compiler.
Then, it follows from the security of the regular compiler that the scheme produced
by the multi-authority compiler is also secure.
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Theorem 4.2

If Γ has independent encodings and satisfies the special symbolic property (Def-
inition 4.5), and the (d1, d2)-parallel DBDH assumption holds in G, H, and GT ,
then the scheme in Definition 4.10 is statically secure. The scheme is also secure
under static corruption, if the special symbolic property holds for a =

⋃
l∈C α|l

and b =
⋃

l∈C b|l, where C denotes the set of corrupted authorities.

4.7 New schemes
To illustrate the effectiveness of our new compiler, we give several new CP-ABE
constructions. In particular, these constructions can be instantiated with our new
compiler, while existing full-security compilers cannot instantiate them. In this sec-
tion, we give several new decentralized large-universe CP-ABE schemes. In the proofs,
we use a different technique than the “zero-out lemma” as used in statically-secure
decentralized ABE [RW15, DKW23]. We also give large-universe variants of Wat11
(Construction 4.1) and AC17 (Construction 4.3), and investigate whether RW13 (Con-
struction 4.2) and the large-universe variants of Wat11 and AC17 can support an
attribute-wise key generation (Section 2.9.3).

For all these schemes, we assume that F maps the variables to 0 unless otherwise
specified. We do not define maps for D, as the proofs generalize to any such map that
is correct. We also let w (with w1 = 1) be the vector orthogonal to all Aj with j ∈ Υ
(Definition 2.5). The access policy of each decentralized scheme is extended with
another map ρ̃ : [n1] → [naut], which maps each row to an authority, and similarly,
we extend the attribute set with a map ρ̃S : S → [naut], which maps each attribute in
the set to an authority. In the proofs for decentralized ABE and ABE with attribute-
wise key generation, we need the entire key set S to construct the substitution vector
of one or more key variables. Therefore, when instantiating those PESs with the
multi-authority compiler, the resulting schemes are statically secure.

4.7.1 Efficient decentralized large-universe CP-ABE from FDH
We first give a scheme that is similar to the Rouselakis-Waters decentralized scheme
(RW15) [RW15], but has a more efficient decryption. In part, to achieve this, we use
the multi-use techniques by Agrawal and Chase [AC17b] (also used in their scheme
in Construction 4.3). In particular, we introduce another map τ : [n1] → [m] that
maps the rows associated with the same attributes to different integers, i.e., m =
maxj∈[n1] |ρ−1(ρ(j))|, and τ is injective on the sub-domain ρ−1(ρ(j)) ⊆ [n1].
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Construction 4.5: Decentralized large-universe CP-ABE from FDH

We define the GPES as follows.

- Param(U): Let {Al}[naut] be the authorities, and nα = naut and nb =
2naut + |U|, α = ({αl}l∈[naut], and b = ({bl, b′l}l∈[naut], {batt}att∈U ), where
U denotes the universe. We set F(batt) = 1 for all att ∈ U (where the FDH
expects att as input).

- EncKey((S, ρ̃S), p): Set m1 = |ρ̃S(S)| + 1, m2 = 0, k = ({k1,l = αl +
rGIDbl + rlb

′
l}l∈ρ̃S(S), {k2,att = rρ̃S(att)batt}att∈S), and F(rGID) = 2 (where

the FDH expects GID as input).

- EncCt((A, ρ, ρ̃, τ), p): We set w1 = m + n1, w2 = n2 − 1, w′
2 = n2 − 1,

cM = s̃, c = ({c1,j = µj + sjbρ̃(j), c2,j = sjb
′
ρ̃(j) + s′τ(j)bρ(j)}j∈[n1]) and

c′ = ({c′j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃ +
∑

k∈[2,n2]
Aj,kv̂k,

µj =
∑

k∈[2,n2]
Aj,kv̂

′
k and s = ({sj}[n1], {s′l}l∈[m]).

- Pair((A, ρ, ρ̃, τ), (S, ρ̃S), p): On input policy A = (A, ρ, ρ̃, τ), and set of
attributes (S, ρ̃S), if A |= S, then this algorithm determines Υ = {j ∈ [n1] |
ρ(j) ∈ S} and {εj ∈ Zp}j∈Υ such that

∑
j∈Υ εjλj = s̃ (Definition 2.5), and

outputs the vector e =
∑

j∈Υ εj1
w4
j , and two matrices

E = −
∑

j∈Υ εj

(
1w1×m3

(2,τ(j)),(2,ρ(j)) + 1w1×m3

(1,j),(1,ρ̃(j))

)
and E =

∑
j∈Υ εj

(
1w3×m1

(1,j),GID + 1w3×m1

(2,j),ρ̃(j)

)
.

Lemma 4.6

The GPES in Construction 4.5 satisfies the special selective symbolic property.

Proof. Let C ⊆ [naut] be a set of corrupted authorities, and d1 = n1 and d2 = n2.

- EncB((A, ρ, ρ̃, τ), a, b)→ ({al,Bl,B
′
l}l∈[naut], {Batt}att∈U ), where al = 0d1 and

Bl,B
′
l,Batt = 0d1×d2 for all l ∈ C and att /∈ ρ([n1]), and let v ∈ Zn2

p (with
v1 = 1) be the vector orthogonal to each row j ∈ ρ̃−1(C) associated with a
corrupted authority. For all l ∈ [naut] \ C, we set:

al =
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1
j , Bl =

∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,k(1
d1×d2

j,k + vk1
d1×d2
j,1 ),

B′
l =

∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,k , {Batt =
∑

j∈ρ−1(att),k∈[n2]

Aj,k1
d1×d2

τ(j),k }att∈ρ([n1]).
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- EncR((A, ρ, ρ̃, τ), (S, ρ̃S), a, b)→ (rGID, {rl}l∈ρ̃S(S)), where

rGID = −1d2

1 +
∑

k∈[2,n2]

wk1
d2

k , rl = −
∑

k∈[n2]

wk1
d2

k .

- EncS((A, ρ, ρ̃, τ), a, b)→ ({sj}j∈[n1], {s′l}l∈[m], {v̂k, v̂
′
k}k∈[2,n2], s̃), where

s̃ = 1, sj = −1d1
j , s′l = 1d1

l , v̂k = vk, v̂′
k = 1

d2

k + vk1
d2

1 .

Note that, instead of applying the zero-out lemma to simulate e(g, h)c
′
j for all j ∈ [n1],

we introduce another vector v that is orthogonal to all rows associated with corrupted
authorities, which we embed in v̂. ⊓⊔

4.7.2 Decentralized CP-ABE supporting OT-type negations
We also give a decentralized large-universe CP-ABE scheme that supports OT-type
negations. Roughly, it is a decentralized variant of the TKN20 [TKN20] scheme. For
this scheme, we define an additional function ρ′ that maps the rows of the policy
matrix to 1 if the attribute in the policy is not negated and to 2 if it is negated,
a function ρlab that maps the rows of the policy matrix to the label universe, and
τ : [n1] → [m] is a function that maps each row to associated with the same label
to different integers, i.e., m = maxj∈[n1] |ρ

−1
lab(ρlab(j))|, and τ is injective on the sub-

domain ρ−1
lab(ρlab(j)) ⊆ [n1].

Construction 4.6: Decentralized CP-ABE with OT-type negations

We define the GPES as follows.

- Param(L): Let {Al}[naut] be the authorities. On input the label universe
L, we set nα = naut and nb = (1 + 2|L|)naut, where α = {αl}l∈[naut], and
b = ({b, {bl,lab,0, bl,lab,1}lab∈L}l∈[naut]). We also set F(bl,lab,i) = 2l + i for
all l ∈ [naut], i ∈ {0, 1}, lab ∈ L. (The FDH expects Al and lab as input.)

- EncKey((S, ρ̃S), p): Assume that, for each lab ∈ L, there is at most one
att ∈ U such that (lab, att) ∈ S. We set m1 = |ρ̃S(S)| + 1, m2 = 0, and
k = ({k1,l = αl+ rGIDbl+ rlb

′
l}l∈ρ̃S(S), {k2,(lab,att) = rρ̃S(att)(bρ̃S(att),lab,0+

xattbρ̃S(att),lab,1)}(lab,att)∈S), where xatt is the representation of att in Zp.
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- EncCt((A, ρ, ρ̃, ρ′, ρlab, τ), p): We set w1 = m + n1, w2 = n2 − 1, w′
2 =

n2 − 1, cM = s̃,

c = ({c1,j = µj + sjbρ̃(j)}j∈[n1],
{c2,j = sjb

′
ρ̃(j) + s′τ(j)(bρ̃(j),ρlab(j),0 + xρ(j)bρ̃(j),ρlab(j),1)}j∈Ψ,

{c2,j = sjb
′
ρ̃(j) + s′τ(j)bρ̃(j),ρlab(j),1, c3,j = sτ(j)(bρ̃(j),lab,0 + xρ(j)bρ̃(j),ρlab(j),1)}j∈Ψ)

and c′ = ({c′j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃+
∑

k∈[2,n2]
Aj,kv̂k,

and Ψ = {j ∈ [n1] | ρ′(j) = 1} and Ψ = [n1] \ Ψ (i.e., the set of rows
associated with the non-negated and negated attributes, respectively), and
s = ({sj}[n1], {s′l}l∈[m]).

- Pair((A, ρ, ρ̃, ρ′, ρlab, τ), (S, ρ̃S), p): If (A, ρ, ρ̃, ρ′, ρlab, τ) |= S, then this
algorithm determines Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ∈ S}, Υ = {j ∈ Ψ |
(ρlab(j), ρ(j)) ̸∈ S ∧ ∃(ρlab(j), att) ∈ S} and {εj ∈ Zp}j∈Υ∪Υ so that∑

j∈Υ∪Υ εjλj = s̃ (Definition 2.5), and outputs the vector e =
∑

j∈Υ∪Υ εj1
w4
j

and matrices

E = −
∑

j∈Υ∪Υ

εj1
w1×m3

(1,j),(1,ρ̃(j)) −
∑
j∈Υ

εj1
w1×m3

(2,τ(j)),(2,ρ(j))

−
∑
j∈Υ

εj
xattj − ρ(j)

1w1×m3

(2,τ(j)),(2,ρ(j)) and

E =
∑

j∈Υ∪Υ

εj

(
1w3×m1

(1,j),GID + 1w3×m1

(2,j),ρ̃(j)

)
+
∑
j∈Υ

εj
xattj − ρ(j)

1w3×m1

(3,j),ρ̃(j),

where attj is such that (ρlab(j), attj) ∈ S.

Lemma 4.7

The GPES in Construction 4.6 satisfies the special selective symbolic property.

Proof. Let C ⊆ [naut] be a set of corrupted authorities, and d1 = n1 and d2 =
n2 + n1n2|ρlab(n1)|. For simple notation of the column indices, we use (1, k) and
(2, j, k, lab) (for all j ∈ [n1], k ∈ [n2], lab ∈ ρlab(n1)), which are mapped injectively in
the interval [d2]. We define EncB,EncR,EncS as follows:

- EncB((A, ρ, ρ′, τ), a, b) → ({al,Bl,Bl,lab,0,Bl,lab,1}l∈[naut],lab∈L), where where
al = 0d1 and Bl,B

′
l = 0d1×d2 for all l ∈ C, and let v ∈ Zn2

p (with v1 = 1) be the
vector orthogonal to each row j ∈ ρ̃−1(C) associated with a corrupted authority.
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For all l ∈ [naut] \ C, we set:

al =
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kvk1
d1
j , Bl =

∑
j∈ρ̃−1(l),k∈[2,n2]

Aj,k(1
d1×d2

j,(1,k) + vk1
d1×d2

j,(1,1)),

B′
l =

∑
j∈ρ̃−1(l),k∈[n2]

Aj,k1
d1×d2

j,(1,k),

Bl,lab,0 =
∑

j∈Ψl,lab,k∈[n2]

Aj,k

(
1d1×d2

τ(j),(1,k) − xρ(j)1
d1×d2

τ(j),(2,j,k,lab)

)
−

∑
j∈Ψl,lab,k∈[n2]

xρ(j)Aj,k1
d1×d2

τ(j),(1,k),

Bl,lab,1 =
∑

j∈Ψl,lab,k∈[n2]

Aj,k1
d1×d2

τ(j),(2,j,k,lab) +
∑

j∈Ψl,lab,k∈[n2]

Aj,k1
d1×d2

τ(j),(1,k)

where Ψl,lab = {j ∈ [n1] | ρ̃(j) = l ∧ ρlab(j) = lab∧ ρ′(j) = 1} and Ψl,lab = {j ∈
[n1] | ρ̃(j) = l ∧ ρlab(j) = lab ∧ ρ′(j) = 0}.

- EncR((A, ρ, ρ′, τ),S, a, b) → (rGID, {rl}l∈ρ̃S(S)): Let w ∈ (1, w2, ..., wn2
) ∈ Zn2

p

be such that Ajw
⊺ = 0 for all j ∈ [n1] with either (ρlab(j), ρ(j)) ∈ S if ρ′(j) = 1

or (ρlab(j), att) ∈ S with att ̸= ρ(j) if ρ′(j) = 0 (Definition 2.5). Then, set
rGID = −1d2

1 +
∑

k∈[2,n2]
wk1

d2

k and

rl =
∑

k∈[n2]

wk1
d2

(1,k) +
∑

j∈Ψl∩Υ,k∈[n2],(ρlab(j),att)∈S

wk

xρ(j) − xatt
1
d2

(2,j,k,lab),

where Ψl = {j ∈ ρ̃−1(l) | ρ′(j) = 1} and Υ = {j ∈ [n1] | (ρlab(j), ρ(j)) /∈ S}.

- EncS((A, ρ, ρ′, τ), a, b)→ ({sj}j∈[n1], {s′l}l∈[m], {v̂k, v̂
′
k}k∈[2,n2], s̃), where

s̃ = 1, s′l = −1
d1

l , sj = 1d1
j , v̂k = vk, v̂′

k = 1
d2

(1,k) + vk1
d2

(1,1). ⊓⊔

Remark 4.3

This is the first decentralized large-universe CP-ABE scheme that simultaenously
supports any type of negations and that is almost completely unbounded. (The
only aspect in which it is bounded is the number of re-uses of a single label in the
keys.) In contrast, the only other decentralized scheme that supports negations
is the scheme by Okamoto and Takashima [OT13], which also supports OT-type
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negations and is even fully secure, but is bounded in the label universe and the
number of label re-uses in both the keys and ciphertexts.

4.7.3 Large-universe variants of Wat11 and AC17
With our compiler, we can easily transform the PESs of Wat11 (Construction 4.1)
and AC17 (Construction 4.3) to the large-universe setting, i.e., by setting F(batt) = 1
for each att ∈ U (and setting F to 0 for all other encodings) (Definition 4.7). Note
that our large-universe variant of the PES for Wat11 is implied by the fourth scheme
in [Wat11, Wat08, §A] (using random oracles), which is why we name it Wat11-IV
instead of Wat11-LU.

Construction 4.7: The PES for Wat11-IV

The PES for the large-universe variant of Wat11 (Wat11-IV) is defined almost the
same as Construction 4.1), except that the Param function also sets F(batt) = 1
for each att ∈ U (where the FDH expects att as input).

Construction 4.8: The PES for AC17-LU

The PES for the large-universe variant of AC17 (AC17-LU) is defined almost the
same as Construction 4.3), except that the Param function also sets F(batt) = 1
for each att ∈ U (where the FDH expects att as input).

Note that it follows readily from the small-universe counterparts of these schemes
that the large-universe instantiations with our compiler are selectively secure.

4.7.4 Schemes with an attribute-wise key generation
Lastly, we consider whether the large-universe schemes Wat11-IV (Construction 4.7),
RW13 (Construction 4.2) and AC17-LU (Construction 4.8) can support an attribute-
wise key generation (Direction 2.10). For some schemes, this can be achieved easily by
generating the user-specific random r with an FDH (Section 2.9.3), and instantiating
the scheme with the multi-authority compiler (where the number of authorities is 1).
(Note that we subsequently also acquire schemes that are proven statically secure
and not selectively secure.) For RW13, this indeed works: we can simply generate
r with the FDH. Because none of the other variables are generated with an FDH,
the correctness properties in Definition 4.8 are preserved. However, for Wat11-IV
and AC17-LU, this cannot be done as easily, because batt is already generated by an
FDH. Because the user-specific random r occurs together with batt in a product, they
cannot be both generated with an FDH. Hence, the correctness property cannot be
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preserved. To attain an attribute-wise key generation for these schemes, we require
a more intricate approach, possibly closer to the decentralized scheme from FDH
in Construction 4.5. By slightly adapting that scheme (i.e., by introducing a fresh
random integer rl for each subset of S for which a key is requested) and by setting
the number of authorities to 1, we can obtain a single-authority scheme with an
attribute-wise key generation that is somewhat similar to AC17-LU. Unfortunately,
this variant of the scheme incurs considerably higher encryption and decryption costs
than AC17-LU. Possibly, by combining the designs, a more efficient variant may be
obtained (which we leave for future work).

4.8 Future work
Our new compiler gives room for further improvements in the simplified design of
practical PE schemes. Most obviously, it could be investigated whether the approaches
used for our compiler also carry over to full-security compilers. Furthermore, since
our new complexity assumption is structurally closer to the DBDH assumption, it
would be valuable to investigate whether it can be reduced to DBDH and other
well-studied non-parametrized assumptions such as the symmetric external Diffie-
Hellman assumption. Lastly, our decentralized schemes could be used as inspiration
for generic constructions of decentralized schemes, similarly as in the single-authority
setting [Att19]. In this way, we can efficiently achieve certain complex properties such
as non-monotonicity [Amb21] in decentralized ABE.

4.9 Conclusion
We have reviewed the current state of the pair encodings framework, and we have
introduced a new practical compiler for PE and ABE, which uses the symbolic prop-
erty to simplify the security proofs. In general, we have shown that the pair en-
codings framework is very powerful, and captures many schemes. Furthermore, it
allows us to create larger schemes with additional functionality (such as revocation
mechanisms (Section 2.10.2)) without requiring additional (complicated!) security
proofs. We have also proposed a new compiler that benefits from the simplicity
of the symbolic property. Although in contrast to existing full-security compilers
[Att14a, Att16, AC16, AC17b], ours proves selective security generically, it supports
full-domain hashes, flexible instantiations in the pairing-friendly groups and multi-
authority extensions. These properties are widely considered attractive for practice.
To illustrate the effectiveness of our compiler, we have given several new CP-ABE
schemes—including the first decentralized large-universe CP-ABE scheme that sup-
ports any type of negations and that is almost completely unbounded—whose proofs
are much less sizable and arguably simpler to verify than the security proofs of similar
schemes [RW15, TKN20].
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Chapter 5

A bunch of broken schemes: a simple yet
powerful linear approach to analyzing

security of ABE

Verifying security of advanced cryptographic primitives such as attribute-based
encryption (ABE) is often difficult. In this chapter, we show how to break
eleven schemes: two single-authority and nine multi-authority ABE (MA-
ABE) schemes. Notably, we break DAC-MACS, a highly-cited multi-authority
scheme, published at TIFS. The fact that its security issues have not been
noticed for so long suggests that verifying security of complex schemes is com-
plicated, and may require simpler tools. The multi-authority attacks also il-
lustrate that mistakes are made in transforming single-authority schemes into
multi-authority ones. To simplify the verification of security, we systematize
our methods to a linear approach to analyzing generic security of ABE. Our
approach is not only useful in analyzing existing schemes, but can also be ap-
plied during the design and reviewing of new schemes. As such, it can prevent
the employment of insecure (MA-)ABE schemes in the future.

5.1 Introduction
Proving and verifying security of new schemes are difficult, and, perhaps unsurpris-
ingly, several schemes turn out to be broken. Some schemes were shown to be generi-
cally broken with respect to the basic functionality, and are therefore insecure. Others
were only broken with respect to additional functionality. Table 5.1 shows that many
of these schemes have been published at venues that include cryptography in their
scope. This suggests that, even for cryptographers, it is difficult to verify security
of ABE. In addition, many of these schemes are highly cited due to their focus on
practical applications. This popularity shows that the claimed properties of these
schemes are high in demand. It is thus important to simplify the security analysis.
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Table 5.1. Attacks on existing schemes. For each scheme, we list in which work it was
broken, which functionality was attacked, and whether it was later fixed. Also, we provide
the venue and number of citations for these schemes according to Google Scholar. These
results were retrieved on 18 November 2020.

Scheme Broken in Attacked functionality Fixed? Venue Cit.
[LRZW09]
[ZCL+13]
[XFZ+14]

[LHC+11]
[CDM15] Private access policies [LHC+11]

ISC
AsiaCCS

NC

203
104
46

[HSMY12] [GZZ+13] Basic U NC 176

[YJR+13] [HXL15]
[WJB17] Revocation [WJB17] TIFS 474

[HSM+14]
[HSM+15] [WZC15] Basic U ESORICS

TIFS
30
128

[JLWW15] [MZY16] Distributed key generation [JLWW16] TIFS 161

NC = non-crypto venue/journal; U = unknown

To simplify the design and analysis of complex primitives such as ABE, the pair
encodings framework provides a powerful tool, also because it considers the common
structure of many schemes. Furthermore, Agrawal and Chase [AC17b] show that fully
secure schemes can be constructed from pair encodings that are provably symbolically
secure. Using this, they show that any scheme that is not trivially broken implies a
fully secure scheme. Later, Ambrona et al. [ABGW17] expand their framework to
a broader class of schemes, and devise automated tools to prove symbolic security,
subsequently yielding provably secure schemes in the GGM. However, operating these
tools still requires a considerable expertise (and in a different field). Additionally,
these frameworks do not support practical extensions of ABE such as MA-ABE.

In any case, these works illustrate that proving generic security of a scheme pro-
vides a meaningful first step in the analysis of a new scheme, and may even imply
stronger notions of security. Conversely, showing that a scheme is not generically
secure provides overwhelming evidence that a scheme is insecure, regardless of the
underlying group structure or accompanying security proofs. As such, devising man-
ual tools and heuristics to effectively analyze the generic (in)security of schemes may
further contribute to these frameworks. That is, finding a generic attack—assuming
that one exists—is often much simpler than finding a mistake in a security proof. In
fact, it is often the first step that an experienced cryptographer takes when designing
a new scheme.

5.1.1 Our contribution
We focus on simplifying the search for generic attacks (provided that they exist). In a
broader context, our goal is not necessarily to attack existing schemes, but to propose
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a framework that simplifies the analysis—and by extension, design—of secure ABE
schemes. We do this by systematizing a simple heuristic approach to finding attacks.
Our contribution in this endeavor is twofold. First, we show that eleven schemes are
vulnerable to generic attacks, rendering them (partially) insecure. Five of these are
insecure in the basic security model. The other six are insecure in the multi-authority
security model—which also allows for the corruption of one or more authorities—but
are possibly secure if all authorities are assumed to be honest. Essentially, these six
schemes provide a comparable level of security as single-authority schemes. Second,
we systematize our methods to a linear approach to generic security analysis of ABE
based on the common structure of many schemes. Similarly as the aforementioned
frameworks, we consider the pair encodings of the schemes. To this end, we also
formalize such pair encodings for multi-authority schemes. Furthermore, we describe
three types of attacks, which model the implicit security requirements on the keys
and ciphertexts, and simplify the search for generic attacks. They model whether
the master key of the/an authority can be recovered, or whether users can collude
and decrypt ciphertexts that they cannot individually decrypt. In the multi-authority
setting, we also model the notion of corruption.

5.1.2 Technical details
A brief overview of the attack models. We propose three types of attacks,
which all imply attacks on the security model for ABE. This model considers chosen-
plaintext attacks (CPA) and collusion of users. Two of our attack models only consider
the secret keys issued in the first key query phase of the security model, while the
third model also considers the challenge ciphertext. Informally, the attacks are:

• Master-key attack (MK): The attacker can extract the KGA’s master key,
which can be used to decrypt any ciphertext.

• Attribute-key attack (AK): The attacker can generate a secret key for a set
S ′ that is strictly larger than each set Si associated with an issued key.

• Decryption attack (D): The attacker can decrypt a ciphertext for which no
authorized key was generated.

In addition, we distinguish complete from conditional decryption attacks. Condi-
tional attacks can only be performed when the collective set of attributes possessed by
the colluding users satisfies the access structure. In contrast, complete attacks allow
any ciphertext to be decrypted. Figure 5.1 illustrates the relationship between the
attacks, and how the attacks relate to the security model. We consider the first key
query phase and the challenge phase, which output the secret keys for a polynomial
number of sets of attributes, and a ciphertext associated with an access structure such
that all keys are unauthorized, respectively.

The security models in the multi-authority setting are similar, but include the
notion of corruption. The attacker is allowed to corrupt one or more authorities in
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Challenger Attacker

Key query phase I
SKS1

, ...,SKSn

Master-key
attack

Attribute-key
attack

MK
SKS′ :
∀i ∈ [n]
S ′ ⊋ Si

S ′ ⊇
⋃n

i=1 Si
CTA : ∀i ∈ [n]

A ̸|= Si
Challenge phase

A |=
⋃n

i=1 Si?

Complete
decryption attack

Conditional
decryption attack

No Yes

M M

...

...

Figure 5.1. The general attacks and how they relate to one another.

an attack, which should not yield sufficient power to enable an attack against the
honest authorities. Sometimes, schemes employ a central authority (CA) in addition
to employing multiple attribute authorities. This CA is assumed to perform the
algorithms as expected, though sometimes, it may be corruptable. In this work, we
show how to model the corruption of attribute authorities and corruptable CAs, and
how the additional knowledge (e.g., the master secret keys) gained from corrupting
an authority can be included in the attacks.

Finally, we observe that sometimes it is unclear whether a multi-authority scheme
is supposed to provide security against corruption. Initially, multi-authority ABE
was designed to be secure against corruption [Cha07, LW11a]. Not only does this
protect honest authorities from corrupt authorities, but it also increases security from
the perspective of the users. Conversely, not allowing corruption in the security
model provides a comparable level of security as single-authority ABE. In some cases,
the informal description of a scheme is ambiguous on whether it protects against
corruption. For instance, schemes are compared with other multi-authority schemes
that are secure against corruption, while the proposed scheme is not, even though
this is not explicitly mentioned [PO17, MGZ19].
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Table 5.2. The schemes for which we provide attacks. For each scheme, we indicate on
which scheme it is based, which type of attack we apply to it and whether it is complete,
whether it uses collusion or corruption, whether the attack explicitly contradicts the model in
which the scheme is claimed to be secure. We also list the conference or journal in which the
scheme was published and how many times the paper is cited according to Google Scholar.
These results were retrieved on 18 November 2020.

Scheme Based on CD Att. Col. Cor. Con. Venue Cit.
[ZH10b, ZH10a]

[ZHW15] - ✗ AK 2 - ✓
NC
NC

112
123

[NDCW15] [Wat11] ✓ D - - ✓ ESORICS 46
[YJ12] - ✓ MK - A ✓ NC 155

[YJRZ13, YJR+13]
[WJB17] - ✓ D - - ✓

NC, TIFS
NC

474
28

[JLWW13]
[JLWW15] [BSW07] ✗ AK 2 - ✓

NC
TIFS

174
161

[QLZ13] - ✓ MK - - ✓ ICICS 42
[YJ14] - ✓ D - A ✓ NC 240
[CM14] - ✓ D - A U NC 42

[LXXH16]
[MST17] [Wat11] ✓ MK - CA ✓

U
NC

AsiaCCS
110
25

[PO17] - ✓ D - A U SACMAT 16M
u
lt

i-
au

th
or

it
y

A
B

E

[MGZ19, §3.2] [LW11a] ✓ MK - CA U Inscrypt 4

CD = complete decryption attack, Att = attack, MK = master-key attack,
AK = attribute-key attack, D = decryption attack; Col = collusion,

Cor = corruption, Con = contradicts proposed security model, U = unclear,
NC = not published at peer-reviewed crypto venue/journal,

CA = central authority, A = key generation authority

Finding attacks, generically. We evaluate the generic (in)security of a scheme
by considering the pair encodings of a scheme (Chapter 4). On a high level, generic
security of a scheme is evaluated by considering whether αs can be retrieved from a
ciphertext encoding c(s,b) and an unauthorized key encoding k(α, r,b). By multi-
plying the entries of k and c, we emulate the pairing operations made in the scheme.
By linearly combining the resulting values (for which we require additions), we emu-
late the other available group operations. As a result, such a “combination” of a key
and ciphertext encoding can be denoted by a matrix multiplication, i.e., E for which
kEc⊺ = αs. Pair encoding schemes allow us to evaluate the generic security of any
scheme that satisfies this structure, regardless of the underlying group structure. Un-
fortunately, the structure of most multi-authority schemes differs from this structure.
Therefore, we extend the existing definitions to additionally support these multi-
authority schemes. Furthermore, we split the key and ciphertext encodings into two
parts, so we can separately evaluate the stronger attacks, i.e., master-key and com-
plete decryption attacks, and the weaker attacks, i.e., attribute-key and conditional
decryption attacks. This further simplifies the analysis of schemes.



118 Chapter 5. A simple yet powerful linear approach to analyzing security

The attacked schemes. Table 5.2 lists the schemes for which we have found attacks
(see the paper [VA21, VA20] for the attacks). Many of these schemes are published
at venues that include cryptography in their scope, or have been highly cited. Hence,
even though many researchers have studied these schemes, mistakes in the security
proofs have gone unnoticed. These attacks also illustrate that systematizing any
generic attacks may actually have merit. Not only does it provide designers with sim-
ple tools to test their own schemes with respect to generic attacks, but also reviewers
and practitioners. Because most schemes are broken with respect to the strongest
attacks, i.e., master-key and complete decryption attacks, formalizing these models—
which are stronger but easier to verify—simplifies the search for generic attacks.

5.1.3 Definition of (multi-authority) ciphertext-policy ABE
We slightly adjust the more traditional definition of CP-ABE (Definition 3.3) and its
multi-authority variant [LW11a]. Specifically, we split the generation of the keys into
two parts: the part that is dependent on an attribute and the part that is not. These
are relevant distinctions in the definitions of various attack models.

Definition 5.1: More fine-grained definition of ciphertext-policy ABE

A CP-ABE scheme with some authorities A1, ...,An (where n ∈ N)—such that
each Ai manages universe Ui—users and a universe of attributes U =

⋃n
i=1 Ui

consists of the following algorithms.

- GlobalSetup(λ) → GP: The global setup is a randomized algorithm that
takes as input the security parameter λ, and outputs the public global
system parameters GP (independent of any attributes).

- MKSetup(GP) → (GP,MK): The master-key setup is a randomized al-
gorithm that takes as input the global parameters GP, and outputs the
(secret) master key MK (independent of any attributes) and updates the
global parameters by adding the public key associated with MK.

- AttSetup(MK,GP, att)→ (MSKatt,MPKatt): The attribute-key setup is a
randomized algorithm that takes as input possibly the master key and the
global parameters and an attribute, and outputs a master secret MSKatt

and public key MPKatt associated with attribute att.

- UKeyGen(MK,GP, id) → SKid: The user-key generation is a randomized
algorithm that takes as input the master key MK, the global parameters
GP and the identifier id, and outputs the secret key SKid for id.
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- AttKeyGen(GP,MK,SKid, {MSKatt}att∈S ,S) → SKid,S : The attribute-
key generation is a randomized algorithm that takes as input set of at-
tributes S possessed by some user with identifier id, and the global param-
eters GP, the master key MK, the secret key SKid and master secret key
MSKatt, and outputs a user-specific secret key SKid,S = {SKid,att}att∈S .

- Encrypt(GP, {MPKatt}att∼A,A,M) → CTA: This randomized algorithm
is run by any encrypting user and takes as input a message M , access
structure A and the relevant public keys. It outputs the ciphertext CTA.

- Decrypt(SKid,S ,CTA) → M : This deterministic algorithm takes as input
a ciphertext CTA and secret key SKid,S = {SKid,SKid,att}att∈S associated
with a set S. It outputs plaintext message M if S is authorized. Otherwise,
it aborts.

- MKDecrypt(MK,CT) → M : This deterministic algorithm takes as input
a ciphertext CT and the master key MK, and outputs message M .

The scheme is called correct if decryption outputs the correct message for a
secret key associated with a set of attributes that satisfies the access structure.

In the single-authority setting (i.e., where n = 1), the GlobalSetup, MKSetup
and AttSetup are described in one Setup, and the UKeyGen and AttKeyGen have
to be run in one KeyGen. In the multi-authority setting (i.e., where n > 1), the
GlobalSetup is run either jointly or by some central authority. MKSetup can
either be run distributively or independently by each Ai. AttSetup can be run
distributively or individually by Ai for the managed attributes Ui. UKeyGen is
run either distributively, individually for each Ai, or implicitly (e.g., by using a
hash). AttKeyGen is run by the Ai managing the set of attributes.

5.1.4 The security model and our attack models
The associated security definition for our fine-grained definition of CP-ABE (Defini-
tion 5.1) is similar to the security model for multi-authority PE (Section 3.3.4) (see
[VA21] for a formal treatment). The only difference is that, instead of running the
AuthoritySetup, the MKSetup and AttSetup are run, and instead of running KeyGen,
the UKeyGen and AttKeyGen are run. We formally define our attack models in line
with Figure 5.1, such that CPA-security also implies security against these attacks.
Conversely, the ability to find such attacks implies insecurity in this model.

Definition 5.2: Master-key attacks (MKA)

We define the game between challenger and attacker as follows. First, the ini-
tialization, setup and first key query phases are run as in the full security model
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for multi-authority PE (Section 3.3.4). Then:

- Decision phase: The attacker outputs MK′.

The attacker wins the game if for all messages M , decryption of ciphertext
CT← Encrypt(...,M) yields M ′ ← MKDecrypt(MK′,CT) such that M = M ′.

Definition 5.3: Attribute-key attacks (AKA)

We define the game between challenger and attacker as follows. First, the ini-
tialization, setup and first key query phases are run as in the full security model
for multi-authority PE (Section 3.3.4). Then:

- Decision phase: The attacker outputs SKS′ , where S ′ ⊋ Sj for all j ∈ [n].

The attacker wins the game if SKid′,S′ is a valid secret key for some arbitrary
identifier id′ and set S ′.

Definition 5.4: Decryption attacks (DA)

We define the game between challenger and attacker as follows. First, the initial-
ization, setup, first key query and challenge phases are run as in the full security
model for multi-authority PE (Section 3.3.4). Then:

- Decision phase: The attacker outputs message M ′.

The attacker wins the game if M ′ = M . A decryption attack is conditional if
A |=

⋃n
j=1 Sj . Otherwise, it is complete.

5.2 Warm-up: attacking DAC-MACS
We first give an example of how an attack can be found effectively by attacking
the YJR+13 [YJRZ13, YJR+13] scheme, also known as DAC-MACS. DAC-MACS is
a popular multi-authority scheme that supports key revocation. This functionality
was already broken in [HXL15, WJB17], but a fix for its revocation functionality
was proposed in [WJB17]. We show that even the basic scheme—which matches the
“fixed version” [WJB17]—is vulnerable to a complete decryption attack. We review
a stripped-down version of the global and master-key setups, the user-key generation
and encryption. In particular, we consider only the parts that are not dependent on
any attributes. Also note that we use a slightly different notation for the variables:
(a, αk, βk, zj , uj , tj,k) 7→ (b, αi, bi, x1, x2, ri).
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- GlobalSetup: The central authority generates a pairing e : G × G → GT over
groups G and GT of prime order p with generator g ∈ G, chooses a random
integer b ∈R Zp and publishes the global parameters GP = (p, e,G,GT , g, g

b);

- MKSetup: Authority Ai chooses random αi, bi ∈R Zp, and outputs the master
secret key MSKi = (αi, bi) and the master public key MPKi = (e(g, g)αi , g1/bi);

- UKeyGen: Upon registration, the user receives partial secret key SK = (x1, g
x2)

from the central authority, with a certificate that additionally includes x2. To
request a key from authority Ai, the user sends this certificate. The attribute-
independent part of a user’s secret key provided by authority Ai is SK′

i =
(gαi/x1+x2b+rib/bi , gribi/x1 , grib), where ri ∈R Zp;

- Encrypt: A message M is encrypted by picking random s ∈R Zp and computing:
CT = (M · (

∏
i e(g, g)

αi)
s
, gs, gs/bi , ...).

Note that an authority Ai can individually generate gαi/x1+x2b+rib/bi , if x2 is
known to the authority. In the specification of DAC-MACS, the central authority
generates a certificate containing x2 and the identifier of the user, such that these
are linked. In the conference version [YJRZ13], this certificate is encrypted, and can
be decrypted only by the authorities. However, in the journal version [YJR+13], this
certificate is not explicitly defined to be hidden from the user. We assume that x2 is
therefore also known to the user. Then, after receiving the certificate from the user,
x2 is used by the authority Ai to link the secret keys to this particular user. However,
we show that knowing exponents x1, x2 enables an attack. That is, any decrypting
user is trivially able to decrypt any ciphertext, without even needing to consider the
attribute-dependent part of the keys and ciphertexts. First, we show that we cannot
perform a master-key attack, i.e., retrieve αi. In particular, the partial secret keys
are of the form SK = (x1, g

x2 , x2, g
αi/x1+x2b+rib/bi , gribi/x1 , grib). We observe that

master key αi only occurs in gαi/x1+x2b+rib/bi . Now, we can cancel out gx2b, because
x2 is known and gb is a global parameter. Unfortunately, we cannot cancel out grib/bi .

Subsequently, we show that it is possible to perform a decryption attack. For this,
we also consider CT = (M · e(g, g)αis, gs, gs/bi , ...). To retrieve e(g, g)αis, we start by
pairing gαi/x1+x2b+rib/bi and gs, and compute

e(gαi/x1+x2b+rib/bi , gs)x1 = e(g, g)αis︸ ︷︷ ︸+
to cancel︷ ︸︸ ︷

e(g, g)x1x2sb+x1risb/bi

blinding value
e(gb, gs)x1x2

e(grib, gs/bi)x1

Hence, e(g, g)αis can be retrieved and thus the ciphertext can be decrypted. Resisting
this attack is not trivial. The main issue is that x2 is known to the user, because x2

needs to be known by the authority to generate gαi/x1+x2b+rib/bi . Otherwise, it cannot



122 Chapter 5. A simple yet powerful linear approach to analyzing security

generate gx2b. To avoid the attack, the CA could encrypt the certificate containing
x2—like in the conference version [YJRZ13]—so only the authorities Ai can decrypt
it, and the user does not learn x2. The attacker can however corrupt any authority,
learn x2 and perform the attack. This still breaks the scheme, because of its claimed
security against corruption of authorities Ai.

This attack illustrates two things. First, it shows the simplicity of finding a master-
key or complete decryption attack—the two strongest attacks—provided that one
exists. In particular, in the analysis, we only have to consider the parts of the keys
that are not related to the attributes or additional functionality. This strips away
a significantly more complicated part of the scheme. Second, we can systematically
focus on the the goal of retrieving gαi or e(g, g)αis. Due to the structure of the scheme,
we can directly analyze the exponent space of the key and ciphertext components.
The pairing operation effectively allows us to compute products of these values “in
the exponent”. Therefore, we do not have to consider the underlying group structure.
Instead, we can attempt to retrieve αis by linearly combining the products of the
exponent spaces of the key and ciphertext components. In addition, we can use the
explicit knowledge of certain variables “in the exponent” by using these variables in
the coefficients.

Not only is finding such a generic attack simpler than verifying a security proof,
it may also help finding the mistake in the proof. As shown, the main reason that
our attack works is that x2 is known to the user. We use this observation to find
the mistake in the security proof in the journal version [YJR+13], which is loosely
based on the selective security proof by Waters [Wat11]. In the proof, the challenger
and attacker play the security game in Definition 2.4. The attacker is assumed to
be able to break the scheme with non-negligible advantage. The challenger uses this
to break the complexity assumption by using the inputs to the assumption in the
simulation of the keys and challenge ciphertext. Roughly, the challenger embeds
the element that needs to be distinguished from a random element in the complexity
assumption in the challenge ciphertext component e(g, g)αis. To ensure that e(g, g)αis

cannot be generated trivially from e.g., gαi and gs, the challenger cannot simulate
the master secret key gαi . To simulate the key gαi/x1+x2b+rib/bi , the part with gαi

is canceled out by the gx2b part. By extension, the challenger cannot fully simulate
gx2b. Because gb needs to be simulated (as it is part of the public key), it is not
possible to simulate the secret in x2. In [YJR+13], the authors attempt to solve
this issue by generating x2 randomly, and by implicitly writing it as the sum of the
non-simulatable secret and another random integer x′

2 (which is thus unknown to
the challenger). While this allows the simulation of x2, this causes an issue in the
simulation of gαi/x1+x2b. Because the secret part in x2 is meant to cancel out the
non-simulatable part, gαi/x1+x2b needs to be simulated by computing gx

′
2b. This is

not possible, since x′
2 is unknown to the challenger.
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5.3 Systematizing our methodology
Our methodology consists of a systematized approach to finding attacks. It consists
of a more concise notation implied by the common structure of many ABE schemes
(Section 5.3.1). We model how learning explicit values “in the exponent”, e.g., by
corrupting an authority, can be used in the attacks (Section 5.3.2). We give our
attack models in the concise notation (Sections 5.3.3, 5.3.4). Finally, we describe a
heuristic approach that simplifies the effort of finding attacks (Section 5.3.5).

5.3.1 The common structure implies a more concise notation
As mentioned in Chapter 4, many schemes have a similar structure, and can be
captured in the pair encodings framework. We adapt Definition 4.1 to match our
more fine-grained definition of CP-ABE (Definition 5.1).

Definition 5.5: Extended pair encoding implied by CP-ABE

Let authorities A1,...,An manage universes Ui for each i, and set U =
⋃n

i=1 Ui as
the collective universe.

- GlobalSetup(λ): This algorithm generates three groups G,H,GT of order
p with generators g ∈ G, h ∈ H, and a pairing e : G×H→ GT . It may also
select common variables b ∈R Zp. It publishes the global parameters

GP = (p,G,H,GT , g, h,U , ggp(b)),

where we refer to gp as the global parameter encoding.

- MKSetup(GP): This algorithm selects α ∈R Zp, sets master key MK = α
and publishes master public key MPK = e(g, h)α.

- AttSetup(MK,GP, att): This algorithm selects integers batt ∈R Zp, sets
as master secret keys MSKatt = batt, and publishes

MPKatt = gmpka(batt,b),

where we refer to mpka as the master attribute-key encoding.

- UKeyGen(MK,GP, id): This algorithm selects user-specific random inte-
gers ru ∈R Zp and computes partial user-key

SKid = hku(id,α,ru,b),

where we refer to ku as the user-key encoding.
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- AttKeyGen(GP,MK,SKid, {MSKatt}att∈S ,S): Let SKid = (hid,1, hid,2, ...).
This algorithm selects user-specific random integers ra ∈R Zp and com-
putes a key SKid,S = {SKid,att}att∈S , such that for all att ∈ S

SKid,att = (h
ka,1(att,ra,b,batt)
id,1 , h

ka,2(att,ra,b,batt)
id,2 , ...),

where we refer to ka,i as the user-specific attribute-key encodings.

- Encrypt(GP, {MPKatt}att∼A,A,M): This algorithm picks ciphertext-specific
randoms s = (s, s1, s2, ...) ∈R Zp and outputs the ciphertext

CTA = (A,M · e(g, h)αs, gc(A,s,b), gca(A,s,b,{batt}att∼A)),

where we refer to c as the attribute-independent ciphertext encoding, and
ca the attribute-dependent ciphertext encoding.

- Decrypt((SKid,SKid,S),CTA): Let SKid = hku(id,α,ru,b) = (hid,1, hid,2, ...),
SKid,S = {(hka,1(att,ra,i,b,batt)

id,1 , hka,2(att,ra,i,b,batt)
id,2 ,...)}i∈{1,...,n},att∈S∩Ui

, and
CTA = (A, C = M ·e(g, h)αs,C = gc(A,s,b),Ca = gca(A,s,b,{batt}att∼A)). De-
fine SA = {att ∼ A | att ∈ S}, and matrices E, Eatt,S,A for each att ∈ S
such that

cEk⊺
u +

∑
att∈SA

(c, ca)Eatt,S,A(ku,ka)
⊺ = αs.

Then, the plaintext message M can be retrieved by recovering e(g, h)αs

from C,Ca and SKid,SKid,S , and M = C/e(g, h)αs.

- MKDecrypt(MK,CT): Let MK = α, MK′ = hmk(α,b) and CT = (C =
m · e(g, h)αs,C = gc(A,s,b),Ca = gca(A,s,b,{batt}att∼A)). Define a vector e
such that ce⊺mk = αs. Then, m can be retrieved by computing

C/
∏
ℓ

e(Cℓ,MK′)eℓ ,

where Cℓ and eℓ denote the ℓ-th entry of C and e, respectively.

Each encoding enc(var) denotes a vector of polynomials over variables var.
Generators constructed by hash functions [BSW07] are covered by this definition
by assuming thatH(att) = gbatt for some implicit batt. Depending on the scheme,
MKSetup may be run distributively or by a single CA (in which case there is only
one public key e(g, h)α associated with the master keys), or independently and
individually by multiple authorities Ai (in which case there are multiple public
keys e(g, h)αi , and we replace the blinding value e(g, h)αs by e(g, h)

∑
i∈I αis).
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5.3.2 Modeling knowledge of exponents – extending Zp

The previously defined notation describes the relationship between the various vari-
ables “in the exponent” of the keys and ciphertexts. The explicit values of most
variables are unknown to the attacker. In multi-authority ABE, authorities provide
the inputs to some encodings, and therefore know these values, as well as their (part
of the) master key. Hence, corruption of authorities results in the knowledge of some
explicit values “in the exponent”. If the values provided by honest authorities are not
well-hidden, it might enable an attack on them.

We model the “knowledge of exponents” in attacks by extending the space from
which the entries of E and Eatt,S,A are chosen: Zp (or some extension with variables
associated with S and A). In fact, the entries of these matrices may be any fraction of
polynomials over Zp and the known exponents. Let K be the set of known exponents,
then the extended field of rational fractions Zp(K) is defined as the quotient field of
Zp[K], where Zp[K] denotes the polynomial ring in variables K. We write the elements
in Zp(K) as ab−1 (mod p), where a, b ∈ Zp[K] and b ̸= 0.

5.3.3 Formal definitions of the attacks in the concise notations
We formally define our attack models (conform Definitions 5.6–5.8, depicted in Fig-
ure 5.1) in the concise notation. For each attack, K ⊆ {x, x1, x2, ...} denotes the set
of known variables. We use the following shorthand for a key encoding for a user id
with set S and for a ciphertext encoding for access structure A:

kid,S := (gp(b),mpka(batt,b),ku(id, α, ru,b),ka,1(att, ra,b,batt), ...),
cA := (gp(b),mpka(batt,b), c(A, s,b), ca(A, s,b, {batt}att∼A)).

We first define the master-key attacks. In these attacks, the attacker has to retrieve
master key mk(α,b), so any ciphertext can be decrypted conform MKDecrypt. In
many schemes, it holds that master key mk is α (i.e., hα), though in others, recovering
e.g., mki = αi/bi for authorities Ai is required to decrypt all ciphertexts. This is
because ciphertext encoding c often contains s or sbi.

Definition 5.6: Master-key attacks

A scheme is vulnerable to a master-key attack if there exist (id1,S1), ..., (idn,Sn)
and the associated key encodings kidi,Si , and there exist ei ∈ Zp(K)

ℓi , where
ℓi = |kidi,Si

| denotes the length of the i-th key encoding, such that
∑

i kie
⊺
i =

mk(α,b) ∈ Zp(α,b). Then, it holds that for all attribute-independent ciphertext
encodings c there exists e′ ∈ Zℓ′

p (with |c| = ℓ′) such that mk · e′ · c⊺ = αs.

We formally define attribute-key attacks. In an attribute-key attack, the attacker
has to generate a secret key associated with a set S ′ that is strictly larger than any
of the sets Si associated with the issued keys.
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Definition 5.7: Attribute-key attacks

A scheme is vulnerable to an attribute-key attack if (id1,S1), ..., (idn,Sn) exist
such that for the key encodings kidi,Si

, it holds that a valid key kid′,S′ (with
user-specific randoms ru and ra constructed linearly from the other user-specific
randoms) can be computed such that

⋃n
i=1 Si ⊆ S ′ and Si ⊊ S ′ for all i ∈ [n]. We

say that kid′,S′ can be computed, if there exist Ei ∈ Zp(K)
ℓi×ℓ, where ℓ = |kid′,S′ |

and ℓi = |kidi,Si
|, for all Si such that kid′,S′ =

∑
i kidi,Si

Ei.

We formally define the complete and conditional decryption attacks. In a decryp-
tion attack, the attacker decrypts a ciphertext for which it only has unauthorized
keys. The attack is conditional if the collective set of attributes satisfies the access
structure associated with the ciphertext. Otherwise, it is complete.

Definition 5.8: Complete/conditional decryption attacks

A scheme is vulnerable to a decryption attack if there exist (id1,S1), ..., (idn,Sn)
and A such that A ̸|= Si for all i, associated ciphertext encoding cA and key
encodings kidi,Si , for which there exist Ei ∈ Zp(K)

ℓi×ℓ′ , where ℓi = |kidi,Si | and
ℓ′ = |cA|, such that

∑
i kidi,Si

Eic
⊺
A = αs. The attack is conditional if it holds

that A |=
⋃

i Si. Otherwise, it is complete.

It readily follows that master-key and attribute-key attacks imply decryption at-
tacks. Specifically, master-key attacks and attribute-key attacks for which

⋃n
i=1 Si ⊊

S ′ holds imply complete decryption attacks.

5.3.4 Definitions of multi-authority-specific attacks
The multi-authority setting yields two additional difficulties in the design of secure
schemes. First, the corruption of authorities yields extra knowledge about the expo-
nent space. Second, the distributed nature of the master key may enable new attacks.
Formally, we define attacks under corruption as follows.

Definition 5.9: Attacks under corruption

A scheme is vulnerable to attacks under corruption if an attacker can corrupt
a subset I ⊊ {1, ...,m} of authorities A1, ...,Am and thus obtain knowledge of
variables K consisting of all variables and (partial) encodings generated by the
corrupt authorities, enabling an attack conform Definitions 5.6, 5.7 or 5.8.

Oftentimes, the master key is generated distributively by the authorities. Hence,
the blinding value is of a distributed form, e.g., e(g, h)αs = e(g, h)

∑
i αis. If each
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partial blinding value e.g., e(g, h)αis can be recovered independently of the user’s
randomness, then the scheme is vulnerable to a multi-authority-specific decryption
attack under collusion. For instance, suppose the blinding value is defined as (α1 +
α2)s. If one user can recover α1s (but not α2s) and another user can recover α2s
(but not α1s), then the scheme is vulnerable to a multi-authority-specific decryption
attack. They can collectively recover (α1 + α2)s, while clearly, they cannot do this
individually. This type of attack was also performed by Wang et al. [WZC15] on the
HSM+14 [HSM+14] and HSM+15 [HSM+15] schemes.

Definition 5.10: Multi-authority-specific (MAS) decryption attacks

Suppose the blinding value of the message is of the form
∑

i bvi(αi, s,b), where
αi denotes the master key of authority Ai, and bvi represent elements in GT .
A scheme is vulnerable to a MAS-decryption attack if there exist a ciphertext
encoding cA and sets Si ⊆ Ui with key encodings kidi,Si

for which there exist
Ei ∈ Zp(K)

ℓi×ℓ′ , where ℓi = |kidi,Si
| and ℓ′ = |cA|, such that kidi,Si

Eic
⊺
A = bvi.

A MAS-decryption attack is also a decryption attack conform Definition 5.8. The
blinding value can be retrieved, while the individual sets are not authorized to decrypt
the ciphertext. Conversely, because such attacks do not exist in the single-authority
setting, they are weaker than regular decryption attacks.

5.3.5 Our heuristic approach
We devise a targeted approach, which can be applied manually (or automatically),
to finding attacks. As the definitions in the previous section imply, finding an attack
is equivalent to finding a suitable linear combination—where the linear coefficients
are the entries of e or E—of all products of the key and ciphertext entries. While
finding such coefficients is relatively simple, we note that finding suitable inputs to
the attacks may be more difficult. In particular, the number of colluding users and
the number of attributes associated with the keys and ciphertexts are effectively
unbounded. However, we observe that it often suffices to consider a limited number
of inputs, and that for some attacks, only the user-key and attribute-independent
ciphertext entries need to be considered. Specifically, Table 5.3 describes these inputs
in terms of encodings, the sets of attributes, and the access policy. Depending on the
maximum number of monomials consisting of common variables in any key entry, the
attacker might need multiple secret keys for the same set of attributes to recover
certain coefficients. For instance, suppose the attacker wants to retrieve α from
α+ r1batt1 + r′1b

′
att1 , where r1 and r′1 are known, user-specific random variables, and

batt1 and b′att1 denote the common variables associated with attribute att1. Because
of the three unknown, linearly independent monomials, this can only be done if the
attacker has three distinct keys for attribute att1. In general, the maximum number



128 Chapter 5. A simple yet powerful linear approach to analyzing security

Table 5.3. The inputs of the attacks, and which encodings are needed.

Attack Secret keys Ciphertexts
UK AK S AI AD A

Master-key ✓ ✗ - ✗ ✗ -
Attribute-key ✓ ✓ S1 = {att1},S2 = {att2} ✗ ✗ -

Complete decryption ✓ ✗ - ✓ ✗ -
Conditional decryption ✓ ✓ S1 = {att1},S2 = {att2} ✓ ✓ A = att1 ∧ att2

UK, AK = user-, attribute-key; AI, AD = attribute-independent, -dependent

Table 5.4. The number of required honest authorities n and the attribute universes U1 and
U2 managed by authorities A1 and A2, respectively, in the multi-authority setting.

Attack n U1 U2
Master-key 1 ✗ ✗

Attribute-key 1 {att1, att2} ✗
Complete decryption 1 ✗ ✗

Conditional decryption 1 {att1, att2} ✗
MAS-decryption 2 {att1} {att2}

of keys with the same set of attributes can be determined in this way, i.e., by counting
the maximum number of linearly independent monomials for each entry.

Similarly, the inputs to multi-authority specific attacks can be limited. First, we
consider the attacks under corruption. Corruption of any number of authorities results
in the additional knowledge of some otherwise hidden exponents, i.e., the master keys
and any random variables generated by these authorities. For most schemes, it should
be sufficient to consider one corrupted and one honest authority in the attacks, though
depending on how e.g., the master key α is shared, the number of corrupted authorities
may need to be increased. Further, we use the same descriptions of the inputs to the
attacks as in the single-authority setting, with the additional requirement that the
input attributes are managed by the honest authority. Second, we consider multi-
authority specific (MAS) decryption attacks. Corruption is not necessary in this
setting, so we assume that all authorities are honest. Additionally, we require at least
two honest authorities as input to finding any attack, so we let each authority manage
one attribute. Table 5.4 summarizes the additional inputs to the attacks in Table 5.3.
Finally, it may be possible that a corruptable central authority (CA) is part of the
scheme, in which case we also consider whether corruption of this CA enables an
attack.

We describe a more targeted approach to finding an attack, i.e., the linear coeffi-
cients e and E, given the input encodings. The approach to finding an attack is linear,
as we attempt to retrieve the desired output (conform Definitions 5.6, 5.7 and 5.8)
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by making linear combinations of products of encodings. The simplest attacks are
the master-key and complete decryption attacks, as we only need to consider the
attribute-independent parts of the keys and ciphertexts. For these attacks, the goal
is to retrieve master key α, or blinding value αs. Typically, α occurs only in one
entry of the keys, while s occurs only in one entry of the ciphertext. Instead of trying
all combinations of the key entries with the ciphertext, we formulate a more targeted
approach. First, consider the monomials to be canceled, and then which combinations
of the key and ciphertext entries can make these monomials. In canceling the pre-
vious monomials, it might be that new monomials are added, meaning that these in
turn also need to be canceled. This process repeats until all monomials are canceled,
and α or αs remains, unless such an attack does not exist. For attribute-key attacks,
this effort is considerably more difficult, as the target is less clear. However, it often
suffices to consider whether the same monomial occurs more than once in the key
encoding. For conciseness, we will only provide the non-zero coefficients in an attack.

5.4 Examples of attacks demonstrating the approach
Using examples of attacks that we have found, we illustrate the way in which our
heuristic approach can be applied. In particular, this suggests the simplicity of only
considering the exponent space rather than also considering the underlying group
structure. Furthermore, in our strongest attack models (i.e., master-key and complete
decryption), we often only need to consider the attribute-independent variables, which
strips away a large and significantly more difficult part of the scheme. Because many
schemes are broken in these models, we assert that it has merit to manually analyze
schemes with respect to these models.

5.4.1 Example without corruption: DAC-MACS
We perform the attack on DAC-MACS [YJRZ13, YJR+13] in Section 5.2 in the
concise notations.

- Type of attack: Complete decryption attack;

- Global parameters: gp = (gp1, ...) = (b, ...);

- Master keys Ai: mpki = bi;

- User-key: ku(α, r,b) = (αi/x1 + x2b+ rib/bi, ribi/x1, rib);

- Attribute-independent ciphertext: c(s,b) = (s, s/bi);

- Blinding value: αis;

- Known exponents: K = {x1, x2} (by definition);
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Note that this notation is not only more concise, it is also more structured. In
particular, it is clearly denoted what the goal is (i.e., retrieve the blinding value),
and what the relevant keys and ciphertexts look like without considering any infor-
mation about the underlying groups or attribute-dependent variables. Furthermore,
this allows us to strip away any additional functionality that further complicates the
structure—and by extension, the analysis—of the scheme.

Due to the concise notations, the previous attack can also be found more simply
than before. First, we sample a user-key (k1, k2, k3) ← ku(α, r,b), and ciphertext
(c1, c2)← c(s,b). To retrieve αis, we start by pairing k1 with c1:

x1k1c1 = αis+

to cancel︷ ︸︸ ︷
x1x2sb+ x1risb/bi,

blinding value

x1x2gp1c1 x1k3c2

which yields two monomials to cancel. Subsequently, we can combine the other com-
ponents and our explicit knowledge of x1 and x2 in such a way that these monomials
can be canceled. This attack can be formulated in matrix notations:

αis = (k1, k2, k3, gp1)︸ ︷︷ ︸
ku


x1 0 0
0 0 0
0 −x1 0

−x1x2 0 0


︸ ︷︷ ︸

E

 c1
c2
gp1


︸ ︷︷ ︸

c

= x1k1c1 − x1k3c2 − x1x2gp1c1.

Because most of the entries of E are zero, we will only write the non-zero entries of E
in further attacks. Note that attacks found in the concise notations also translate back
to the original description, e.g., compare this attack with that in Section 5.2. More
generally, computing kjEi,jci in terms of pair encodings corresponds to computing
e(gci , hkj )Ei,j in the original description of the scheme.

5.4.2 Example with corruption: the [YJ14] scheme
The YJ14 [YJ14] scheme is somewhat similar to the YJR+13 [YJR+13] scheme in
the secret keys. However, the decrypting user knows fewer exponents: instead of
sharing x2 in YJR+13 with the user, it is shared with the authorities Ai. Regardless,
corruption of one authority leads to the knowledge of x2, and thus enables an attack.
We define the encodings and attack as follows.

- Type of attack: Complete decryption attack, under corruption of one Ai;

- Global parameters: gp = (b, b′);
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- Master secret key Ai: mski = (αi, x);

- User-key: ku(αi, r,b) = (αi + xb+ rb′, r);

- Attribute-independent ciphertext: c(s,b) = (s, sb′, ...);

- Blinding value: (
∑

i αi)s;

- Known variables: K = {x} (by corrupting A′);

- The goal: Recover αis from (k1,i, k2,i)← ku(αi, r,b), (c1, c2)← c(s,b);

- The attack: αis = k1,ic1 − k2,ic2 − xmpk1c1.

5.4.3 Example without corruption: the [JLWW13] scheme
We also give an example of a conditional attribute-key attack enabled by two colluding
users. This illustrates the increased difficulty of executing more general attacks, as
they require us to evaluate the entire key. An additional difficulty of executing an
attribute-key attack is in finding an appropriate target key encoding. However, our
possibilities as an attacker are considerably limited, as we can only linearly combine
the key components, and not multiply them. In fact, as Table 5.2 shows, we could
only find attribute-key attacks if a key consists of recurring monomials. While it
is difficult to prove that an attribute-key attack does not exist, it is easy to verify
whether a key consists of recurring monomials.

We attack the [JLWW13] and [JLWW15] schemes—also known as AnonyControl—
which have the same key generation. The JLWW15 scheme is different from JLWW13
in the encryption. It is however incorrect, because a value of a single user’s secret key
is used. The encodings are defined as follows.

- Type of attack: Conditional attribute-key attack, collusion of two users;

- Global parameters: gp = (b, b′),mpka(atti) = batti ;

- Secret keys: ku(α, r,b) = (α+ r), ka(atti, r, ri,b) = (ribatti + r, ri);

We show that the recurrence of r as a monomial in the user-key and attribute-key
encoding enables an attack. While it is relatively simple to show that this cannot be
exploited in a single-user setting, we show that sampling two keys for two different sets
of attributes S1 = {att1} and S2 = {att2} (as in Table 5.3) enables the generation
of a third key for both attributes, i.e., S3 = {att1, att2}. For S1 = {att1}, we
sample k ← ku(α, r,b), and (k1, k2)← ka(att1, r, r1,b). For S2 = {att2}, we sample
k′ ← ku(α, r

′,b), and (k′1, k
′
2)← ka(att2, r

′, r2,b).
The goal is to compute a key for set S3 = {att1, att2}. We aim to generate

attribute-keys for the user-key associated with S1, i.e., k, which links the keys together
with r. As such, to create a key for S3, we need to generate an attribute-key for att2.
We do this by computing: ka(att2, r, r2,b) = (k′1 + k − k′, k′2).
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5.5 Future work and conclusion
We have presented a linear, heuristic approach to analyzing security—consisting of
a more concise notation—and applied it to existing schemes. This approach simpli-
fies manually finding generic attacks provided that they exist. For future work, it
would be valuable to extend the approach to be provably exhaustive, such that it
follows with [ABGW17] that the scheme also implies a provably secure scheme. In
addition, it would be valuable to automatize finding attacks for the multi-authority
encodings like [ABGW17] does in the single-authority setting. To demonstrate the
effectiveness of our approach, we have shown that several existing schemes are vul-
nerable to our attacks, either rendering them fully or partially insecure (see the paper
[VA20, VA21] for more attacks). Most of the attacks are similar in that they either
exploit that one monomial occurs more than once in the keys, or known exponents
yield sufficient knowledge to enable an attack. In general, schemes for which we found
an attack without requiring corruption are structurally more complicated than the
single-authority schemes on which they are (loosely) based. Schemes that are inse-
cure against corruption are generally closer to their (provably secure) single-authority
variants, but knowing certain exponents enables an attack. Possibly, distributively
generating these exponents may prevent this. For future work, it may be interesting
to consider whether this yields secure schemes.
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Chapter 6

ABE Squared: accurately benchmarking
efficiency of ABE

Measuring efficiency is difficult. In the last decades, several works have con-
tributed in the quest to successfully determine and compare the efficiency of
pairing-based ABE. However, many of these works are limited. In this chapter,
we present a framework for accurately benchmarking efficiency of ABE: ABE
Squared. In particular, we focus on uncovering the multiple layers of opti-
mization that are relevant to the implementation of ABE schemes. Moreover,
we focus on making any comparison fairer by considering the influence of the
potential design goals on any optimizations. On the lowest layer, we consider
the available optimized arithmetic provided by state-of-the-art cryptographic
libraries. On the higher layers, we consider the choice of elliptic curve, the
order of the computations, and importantly, the instantiation of the scheme on
the chosen curves. To compare schemes more transparently, we develop this
framework, in which ABE schemes can be justifiably optimized and compared
by taking into account the possible goals of a designer. To illustrate the effec-
tiveness of ABE Squared, we implement several schemes and provide all rele-
vant benchmarks. These show that the design goal influences the optimization
approaches, which in turn affect the overall efficiency of the implementations.
Importantly, these demonstrate that the schemes also compare differently than
existing works previously suggested.

6.1 Introduction
Since attribute-based encryption was introduced, much progress has been made in
the development of pairing-based ABE schemes. As is common in the field of cryp-
tography, whenever a new scheme is presented, its efficiency is compared to that of
other state-of-the-art schemes. For ABE, the Charm framework [AGM+13] is used
in many cases [RW13, RW15, AC17a, ABGW17], which simplifies the prototyping
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of new pairing-based schemes and provides benchmarking tools. However, because
Charm mainly aims at usability in this endeavor, it uses several abstraction layers
between the schemes and the necessary arithmetic. As a result, not all available
optimizations can be used in benchmarking efforts, even though these might be sig-
nificant in any comparisons. Furthermore, by default, the Charm framework builds
on the PBC library [Lyn13], which only supports outdated elliptic curves that have
been proven not to provide 128 bits of security [KB16, BD19]. Consequently, many
implementations and efficiency comparisons use these outdated curves. By extension,
those implementations do not provide realistic estimates of computational costs in
practice. When implemented for practice, curves that currently provide 128 bits of
security should be used. Because these might provide different trade-offs in efficiency,
the implementations may incur different computational costs than the curves used in
the old benchmarks [Ara17, CDS20].

Oftentimes, works that do not use Charm in their efficiency analyses have simi-
lar issues. For instance, they may not use all, if any, optimized arithmetic or other
lower-level optimization techniques [Zeu20, AHM+16, TKN20, PRMV21]. Such tech-
niques allow for faster computations of exponentiations, such as fixed-base expo-
nentiations or multiple-base exponentiations [Sco11, Möl01]. These are often used
when elliptic-curve schemes are deployed in practice, and provide a significant com-
putational advantage over regular variable-base exponentiations. Other implemen-
tations may be targeted for specific platforms such as certain embedded devices
[SR13, WZSI14, MTP+21]. Hence, they are difficult to use in future efficiency com-
parisons without implementing the schemes for those specific devices. On the other
hand, software implementations that do optimize the arithmetic used in the schemes
[ZPM+15] have implemented all underlying arithmetic for some specific elliptic curve,
and are therefore difficult to adapt to other, more up-to-date, curves. This is prob-
lematic, since this particular curve, e.g., the BN254 curve [BN05], may turn out to
provide, e.g., only 100 bits of security [SKSW20].

Another common denominator of these implementations is the absence of a clearly-
defined design rationale when the schemes are instantiated in pairing-friendly elliptic-
curve groups. For instance, choosing a suitable pairing-friendly group providing 128
bits of security [Gui20b] is important for the overall efficiency [Sco11, CDS20]. How-
ever, not every curve may be a good choice for every scheme. Moreover, at the
protocol level, schemes are often designed in the symmetric, type-I setting [Sco11].
On the other hand, in practice, it is better to use asymmetric, type-III pairings due
to their efficiency and security (Section 2.5). While such schemes can be converted
from the type-I to the type-III setting [RCS12], existing works that facilitate this
[AGH13, AGOT14, AGH15, AHO16a] are often not used in the implementation of
ABE schemes.

Nevertheless, such a design rationale determines the groups in which the com-
putations are performed during key generation, encryption and decryption, and is
therefore crucial when analyzing the efficiency of the scheme. This rationale heav-
ily influences the choice of pairing-friendly groups and the type conversion, and by
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extension, the efficiency of the scheme. For instance, operations in G are generally
more efficient than those in H [Ara17, AGM+, CDS20]. Consequently, if a designer
places all ciphertext components in G, then the encryption efficiency is optimized at
the expense of the key generation efficiency. Another designer might want to optimize
the key generation efficiency, and therefore places all key components in G, and the
ciphertext components in H. Because not all implementations take into account and
specify these considerations, they cannot be effectively and meaningfully compared
[VAH21]. In fact, a somewhat unethical cryptographer who, for instance, wants to
promote their new scheme’s fast encryption algorithm could place all ciphertext com-
ponents of their own scheme in G, while they place the compared scheme’s ciphertext
components in H. As a result, their own scheme might outperform the other scheme,
even though the other scheme would have outperformed the new scheme if its cipher-
text components had also been placed in G. In summary, for various efficiency goals,
a different distribution of the key and ciphertext components over the two source
groups may be optimal.

In this chapter, we aim to resolve the aforementioned issues. In particular, we pro-
vide a framework for benchmarking and comparing efficiency of ABE schemes that
takes into account important features such as optimized arithmetic and conversion
techniques. Along the way, we introduce novel conversion techniques to obtain, e.g.,
a type conversion with an optimized decryption algorithm. We also show how this
framework can be applied to existing schemes by implementing and benchmarking
them. Lastly, we illustrate how these benchmarks can be compared fairly, by com-
paring the variants that are optimized in the same way, e.g., the variants with an
optimized decryption algorithm.

6.1.1 Our contribution
We set up ABE Squared, a general framework for accurately benchmarking efficiency
of ABE. This framework describes optimization approaches in the implementation of
ABE schemes based on various design goals, by unifying multiple established areas in
optimization. By choosing one design goal, multiple schemes can be optimized in a
uniform way, and thus be fairly compared. Concretely,

• we identify four optimization layers that are important in the implementation
of the schemes:

– the used arithmetic and group operations;

– the choice of pairing-friendly curve;

– the order of computations;

– the type-conversion techniques;

• we formulate various optimization approaches for several clearly defined design
goals:
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– optimized key generation;

– optimized encryption;

– optimized decryption;

– balanced (in any combination of the algorithms, e.g., balanced key gener-
ation/encryption, balanced encryption/decryption);

• as part of the optimization approaches, we introduce new heuristic, manual
conversion techniques from the type-I to the type-III setting, which take into
account the other optimization layers. This is especially important for optimiz-
ing the decryption algorithm, for which the existing frameworks fall short.

To illustrate the effectiveness of our framework, we provide the implementations of
several important CP-ABE schemes: Wat11 (Construction 4.1), RW13 (Construc-
tion 4.2) and AC17 (Construction 4.3).

6.1.2 Background
We provide further background information and motivate our choices and some of the
features of the new framework.

RELIC. Our framework uses the RELIC toolkit [AGM+], which is a cryptographic
library that can be used for building elliptic-curve and pairing-based cryptographic
schemes. In particular, it implements pairing-friendly elliptic curves that provide at
least 128 bits of security, such as BLS12-381 and BLS12-446 [BLS02, Bow, BD19,
WB19]. It provides high-speed implementations of frequently used arithmetic and
group operations. In general, using a library for the lowest level of optimizations,
i.e., arithmetic and groups operations, allows us to easily instantiate the schemes
with new—possibly more secure or more efficient—curves, in the case that it is nec-
essary to do so. We chose RELIC because it is actively maintained, and compared
to other libraries such as MIRACL [Sco03], it supports more pairing-friendly curves
providing 128 bits of security. This allows us to compare the efficiency of the imple-
mented schemes on multiple curves with the same security level. In this way, we can
investigate which trade-offs the various curves incur.

BLS12-381. A specific elliptic curve of interest supported by RELIC is the BLS12-
381 curve [Bow, WB19], which is an instantiation of the curves designed by Barreto,
Lynn and Scott (BLS) [BLS02]. In the last few years, BLS12-381 has established itself
as a popular curve. For example, it is used in the Algorand blockchain [GHM+17,
BKLS02] and by the privacy-oriented Zcash blockchain in the implementation of zk-
SNARKS [BCCT12, ZCa21].
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Other pairing-friendly curves. We show that the chosen pairing-friendly curve
influences the overall efficiency of the scheme, and is thus an important aspect in the
optimization. To illustrate this, we benchmark the schemes on various curves, at the
same security levels (see Section 6.2.2 for a selection of the curves). As part of the
optimization approaches, we pick the best curve, given the chosen design goal.

OpenABE. In addition to Charm, we also compare our implementations with the
OpenABE [Zeu20] implementation of the scheme by Waters [Wat11, Wat08]. It is a
publicly available software implementation of ABE that is actively maintained, and
that is specifically designed for practical application rather than for benchmarking
efforts. Furthermore, OpenABE also relies on RELIC for the curve arithmetic. How-
ever, it is specifically configured to only support the BN254 curve.

The implemented schemes. We implement several variants of three schemes:
Wat11 (Construction 4.1), RW13 (Construction 4.2) and AC17 (Construction 4.3).
Specifically, we consider two versions of Wat11 and AC17: their small-universe and
large-universe variants. We have chosen these schemes, in part, due to their popularity
in follow-up work. By benchmarking and comparing these constructions, we obtain
a better understanding of their efficiency. Compared to Charm, their efficiency also
compares differently, which illustrates that our framework truly leads to significant
improvements in the accuracy of the benchmarks.

Our type-conversion techniques. As part of our framework, we introduce novel
heuristic and manual techniques to convert the schemes from the type-I to the type-III
setting. Although type conversion has been extensively studied, culminating in various
works that even automate this effort [AGH13, AGOT14, AGH15, AHO16a], these do
not sufficiently optimize the schemes for all of the design goals that we consider in our
optimization approaches. In particular, some of these conversion techniques focus, in
terms of efficiency, mainly on the sizes of the parameters [AGOT14, AGH15, AHO16a].
These are not sufficient in optimizing the type-converted scheme for, e.g., the opti-
mized decryption approach. In contrast, [AGH13] also allows for the optimization of
the computational costs, but only takes into account the number of group operations,
e.g., exponentiations, and not the computational costs of the various group opera-
tions. This does not allow us to distinguish between the different group operations
within the same group, even though they may incur different computational costs.
Furthermore, [AGH13] does not explicitly allow the choice of pairing-friendly curve
or the order of the computations to be taken into account. Hence, we develop tech-
niques to consider these different computational costs, by also measuring these costs
for various suitable curves, and by determining the most efficient order of computa-
tions. In this way, we can minimize the computational costs of the algorithm(s) more
accurately, based on the chosen design goal and associated optimization approach.
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Benchmarking

Optimized Usability

OpenABE

CharmABE Squared

Figure 6.1. Rough overview of the position of our framework compared to Charm and
OpenABE, with respect to the goals: benchmarking, optimization and usability.

Code. Our implementations of the schemes are available in the public domain, and
can be found at https://github.com/abecryptools/abe_squared.

Positioning our framework. Our framework aims to bridge a gap in the bench-
marking of ABE schemes, as described above. Notable software implementations that
are built on libraries such as RELIC and that provide benchmarking utilities—and
that are still maintained—are Charm and OpenABE. However, their goals are ar-
guably different from ours (see Figure 6.1). Charm and OpenABE are both focused
on usability, albeit in different ways. Charm aims to be usable in the prototyping
and benchmarking of schemes, so that cryptographers can implement new schemes
without having to know implementation details. OpenABE aims to be usable for prac-
tical applications, providing ready-to-use ABE implementations for practitioners. As
a result, neither of their implementations uses all available optimized arithmetic. In
contrast, our framework, ABE Squared, focuses on optimization rather than usability,
such that a more accurate view of the efficiency of ABE schemes can be obtained.
Although the implementations can be used by any cryptographer to benchmark and
compare the schemes, they are not immediately suitable for practical applications
like OpenABE. Furthermore, our implementations do not aim to provide a platform
to readily implement new schemes, like Charm does, since it requires a significant
engineering expertise and some familiarity with RELIC.

6.2 Our framework: ABE Squared
We introduce our framework, ABE Squared, in this section. Concretely, we iden-
tify several layers of optimization: the arithmetic and group operations, the pairing-
friendly groups that are used, the order of the computations and the type conversion
(see Figure 6.2). The goal of our framework is to optimize the theoretical description
of the scheme. As such, we want to obtain a description of the scheme that directly

https://github.com/abecryptools/abe_squared
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yields the most efficient implementation. In this process, the design goal associated
with a practical application is crucial: some applications may require an optimized en-
cryption while others require an optimized decryption algorithm. In order to achieve
this goal, these four layers need to be optimized. We do this by devising optimization
approaches based on these design goals.

These optimization approaches consist of several steps. In particular, we first an-
alyze the efficiency of the arithmetic and group operations used in the schemes by
benchmarking their efficiency in the pairing-friendly groups that can be used. Subse-
quently, we show how the order of computations can be optimized, given the efficiency
of the available algorithms for arithmetic in the chosen pairing-friendly groups. (Note,
however, that the optimal order may depend on the choice of pairing-friendly groups
and the distribution of the key and ciphertext components, i.e., in which groups these
live. Because type conversion—which determines this distribution—is the next step,
we may need to adjust the order at a later stage in the optimization approach.) Fi-
nally, we show how the schemes can be instantiated in these groups to obtain the
best possible efficiency, given the design goal. To this end, we devise new manual and
heuristic techniques to convert the scheme from the type-I to the type-III setting.
Possibly, the choices that are made during this type conversion might require that we
circle back to the choice of pairing-friendly groups or the order of computations. For
instance, it may not be clear what the best choice of pairing-friendly group is without
simply benchmarking the schemes for all of them.

6.2.1 Optimized arithmetic and group operations
We analyze the efficiency of the arithmetic that may be required to perform the
algorithms of a scheme. Many efficient algorithms exist to perform arithmetic in
groups G, H and GT , including optimized algorithms for certain combinations of
arithmetic. Furthermore, depending on the fixed use of certain variables, the use of
precomputation may significantly speed up the computations.

• Variable-base exponentiation (VBE): an exponentiation of the form gx, in
which the variable base g varies in each execution of the algorithm;

• Fixed-base exponentiation (FBE): an exponentiation of the form gx, in
which the base g is fixed after the setup and is the same in each execution of
the algorithm;

• Multiple-base exponentiation (MBE): a product of multiple exponentia-
tions [Möl01], typically of the form

∏
i∈I gxi

i such that gi are bases and xi are
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The arrows have the following meaning:
a b = “a influences b”

a b = “a may require adjustment in b”
a b = “a is input to b”/“b is output of a”

Figure 6.2. Overview of the ABE Squared framework and its relationship with ABE ap-
plications. In particular, the diagram describes the steps needed between the theoretical
descriptions and the implementations of (possibly multiple) ABE schemes. Instead of mov-
ing from a design goal to the implementation of a scheme directly, we first optimize the
theoretical description of the scheme for the chosen design goal.

exponents for each i ∈ I with |I| ≥ 2. Note that RELIC refers to these as si-
multaneous exponentiations1 instead, and has two functions for this algorithm:
_mul_sim, a two-base variant and _mul_sim_lot, a multi-base variant;

• Multi-pairing: a product of pairing operations can be executed more efficiently
[GS06]. In general, a pairing computation consists of a Miller loop [Mil04] and
a final exponentiation. In a pairing product, the final exponentiation can be
shared, i.e., it only needs to be performed once. In this way, only the Miller
loop needs to be executed for each additional pairing operation in the product;

• Fixed-argument pairing: a pairing operation can be computed more effi-
ciently if the first argument is fixed. For instance, [CS10] speeds up the Miller
loop by 37%. RELIC does not support fixed-argument pairings, however;

1Actually, RELIC refers to multiple-base exponentiations as simultaneous multiplications, where
‘multiplication’ refers to a scalar multiplication. A scalar multiplication is an additive operation in
an elliptic-curve group analogous to an exponentiation in a multiplicative group.
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• Hashing into the group: a map from the set of arbitrary-length strings {0, 1}∗
to a group. RELIC supports these, including a more optimized variant for the
BLS12-381 curve [WB19].

6.2.2 Optimal choices of pairing-friendly groups
Another aspect that influences the efficiency of the algorithms is the choice of the
pairing-friendly group [GPS08, Ara17]. In general, many pairing-friendly groups ex-
ist that provide 128 bits of security [Gui20a], currently the recommended minimum
security level for cryptography [Bar20]. These groups typically consist of elliptic-
curve groups, such as the BLS [BLS02] and BN [BN05] curves. Some of the curves
listed in [Gui20a] provide more than 128 bits of security, and therefore, they will
still likely yield sufficient security if the most novel attacks are slightly improved
[KB16, BD19, Gui20a]. In contrast, other curves provide slightly fewer than 128 bits of
security and may not provide sufficient security if these attacks are improved. RELIC
[AGM+] supports two curves in the [125, 128]-range, i.e., BLS12-381 and BN382, and
three curves with security levels in the [129, 135]-range, i.e., BN446, BLS12-446 and
BLS12-455. On the one hand, curves with a higher security level provide less efficient
arithmetic [GPS08]. On the other hand, these curves provide more than 128 bits of
security. This might also be beneficial, because most ABE schemes decrease a few
bits in security as some of the parameters, e.g., the size of the access policies, grow
[Wat11, RW13, AC17b]. If curves with a security level in the [125, 128]-range are used,
the implementations of these schemes provide even fewer than 128 bits of security.
For instance, BLS12-381 currently provides roughly 126 bits of security [GMT20],
and the schemes that we have selected lose an additional 4-7 bits for the maximum
policy sizes that we will use. Therefore, the implementations provide 119-122 bits of
security. In contrast, BLS12-446 and BN446 provide 132 bits of security [GS19], and
thus, the implementations provide 128 bits of security. In this thesis, we focus only on
the [125, 128]-bit security range. We refer to the paper [dlPVA22] for a performance
analysis of the results in the [129, 135]-bit range.

6.2.3 Benchmarks of the group operations on various curves
To choose a suitable curve, it is important to know how efficiently the group operations
perform. Table 6.1 lists the performances of various algorithms on the elliptic curves
that we will use in our benchmarks in Section 6.3. The table shows that, at the same
security level, BLS12 curves outperform the BN curves in almost all algorithms except
hashing and multiple-base exponentiations with large numbers of bases. Therefore,
we expect that for most, if not all, schemes, the BLS12 curves are better choices than
the BN curves. The table also shows that the arithmetic in G is generally faster than
the arithmetic in H, which in turn is faster than the arithmetic in GT . Furthermore,
performing an additional pairing operation—whose costs are slightly lower than the
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Table 6.1. The computational costs of various algorithms on the elliptic curves used in our
comparison, expressed in the number of 103 clock cycles. For each pair of curves with the
same security level, the lowest costs are typeset in bold. These benchmarks were run on
an AMD Ryzen 7 PRO 4750 processor, with power management disabled and throttle to
max. frequency (one single core) at 4.1 GHz. Note that TBE and MBE denote a two-base
exponentation (run with _mul_sim) and multi-base exponentiation with two bases (run with
_mul_sim_lot), respectively, and MP a multi-pairing with two pairings.

Costs of the algorithms in G Costs of the algorithms in H In GT Pairing costs
Curve VBE FBE TBE MBE Hash VBE FBE TBE MBE Hash VBE Pair MP
BN254 91 51 135 160 58 157 112 339 273 167 236 425 585

BLS12-381 184 102 266 319 225 324 247 729 548 548 496 1245 1618
BN382 266 153 382 473 151 487 372 1105 837 480 745 1405 1963

costs incurred by a Miller loop—is more costly than exponentiating in G and H, while
it is less costly than exponentiating in GT .

6.2.4 Optimizing the order of computations
The order of the computations can also be optimized. The most notable example of an
optimized order of computations is to share a pairing operation when several compo-
nents share an argument on the other side of the pairing [PTMW10]. From this point
forward, we will refer to this kind of product as a shared-argument pairing product.
For instance, rather than computing

∏
i∈Υ ê(K,Ci), one can compute ê(K,

∏
i∈Υ Ci),

which only requires one pairing operation and |Υ| multiplications in one of the source
groups instead of one |Υ|-multi-pairing. Similar optimizations can be done by allow-
ing the key generation authority to generate components such as hratt(b1xatt+b0)+rb′

by first computing ratt(b1xatt + b0) + rb′ in Zp and then exponentiating h with the
result, rather than computing this as hratt(b1xatt+b0)+rb′ = (hb1)rattxatt(hb0)ratt(hb′)r.
While the former only costs one exponentiation and three multiplications in Zp, the
latter requires a three-base exponentiation, which is generally much less efficient. In
optimizing the order of computations, it is important to know the efficiency of the
operations in the various groups. For instance,

∏
i∈Υ (ê(K1,i, C1,i) · ê(K2,i, C2,i))

εi is
often optimized to

∏
i∈Υ ê(Kεi

1,i, C1,i) · ê(Kεi
2,i, C2,i), because two exponentiations in

G are more efficient than one exponentiation in GT . While this is the case for the
curves considered in this work, it might be the case that, for some curves, it is more
efficient to do one exponentiation in GT instead of two in G. Furthermore, we show
in Section 6.2.6 that the optimal order may depend on the distribution of the key and
ciphertext components over the two source groups.

6.2.5 Our optimization approaches for specific design goals
In optimizing the ABE schemes, we consider various approaches based on specific
real-world design goals. In particular, this influences the conversion of the schemes
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to the type-III setting, but possibly also the choice of an elliptic curve. For pairing-
based schemes in general, such conversions from the type-I to the type-III setting
were previously considered in [AGH13, AGOT14, AGH15, AHO16a], which all au-
tomate this effort and which focus mostly on other predicate encryption primitives
such as identity-based encryption [Sha84]. However, these frameworks only optimize
the parameter sizes, and not necessarily the computational costs of the algorithms.
While, e.g., optimizing the ciphertext size also results in an optimized efficiency of
the encryption algorithm, such approaches might not necessarily lead to an optimized
decryption algorithm. Furthermore, depending on the application in which ABE is
going to be deployed, a practitioner may prefer a more balanced approach, in which
the total costs of, e.g., the encryption and decryption algorithms are optimized rather
than either one of them. To this end, we define the following optimization approaches
based on design goals.

• Optimized key generation (OK): optimize the efficiency of the key genera-
tion algorithm;

• Optimized encryption (OE): optimize the efficiency of the encryption algo-
rithm;

• Optimized decryption (OD): optimize the efficiency of the decryption algo-
rithm;

• Balanced key generation/encryption (BKE): optimize the average costs
of the key generation and encryption algorithms;

• Balanced encryption/decryption (BED): optimize the average costs of the
encryption and decryption algorithms.

A practitioner can also devise optimization approaches for other design goals, e.g.,
“balanced key generation/decryption”. In general, a practitioner can specify any goal
in which the average/total costs of any subset of algorithms is minimized. Even though
these may be useful in practice, the conversion techniques used in these approaches
are likely similar to those used in the aforementioned approaches.

The importance of computational-efficiency focused approaches. In contrast
to most conversion frameworks [AGOT14, AGH15, AHO16a], we do not necessarily
describe our approaches in terms of the sizes of the public keys, secret keys or cipher-
texts, but rather in terms of the computational costs of the algorithms like [AGH13].
However, due to the fact that the smallest group G also provides the most efficient
arithmetic, we estimate that our optimized encryption and key generation approaches
coincide with the optimized ciphertext and secret key size approaches in [AGH15].
The other three design goals, on the other hand, do not seem to match with any of
the approaches in these conversion frameworks [AGOT14, AGH15, AHO16a], even
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though these may be of interest to practitioners. For instance, optimizing either the
key generation or encryption algorithm may result in a heavy performance penalty
on the other algorithms, while a balanced approach would ensure that an algorithm
can perform efficiently while only requiring minimal sacrifice in efficiency on the other
algorithms. Furthermore, we show that an optimal key or ciphertext size does not
necessarily imply an optimal decryption cost, but requires a more intricate, in-depth
analysis of the decryption algorithm and the arithmetic provided by the chosen groups
and pairing. At a high level, our approach is thus closer to [AGH13], which focuses on
optimizing the computational efficiency of the scheme, albeit in an automated way.
Another common denominator between [AGH13] and our work is that the converted
scheme is not automatically secure, though we argue that the converted schemes are
secure nonetheless. An advantage of our type-conversion techniques over [AGH13] is
that we take into account the costs of the arithmetic and group operations in our
optimizations.

6.2.6 Our type-conversion methods
We describe our type-conversion methods, which can be used to convert a scheme
from the type-I to the type-III setting given some specific design goal (as discussed
in Section 6.2.5). We assume that the scheme to be converted is given in the type-I
setting, and that it can be somewhat freely converted to the type-III setting without
breaking its security. This is often the case: schemes are predominantly designed
in the type-I setting [Sco11], but the symmetry of the pairing in many cases is not
needed for their security [AGH13]. The symmetry is, on the other hand, to some
extent important for the correctness. Specifically, the key and ciphertext components
that are paired during decryption need to live in different source groups. If these two
paired components live in the same group, then this yields incorrectness of decryption,
for the simple reason that they cannot be paired. In addition, when full-domain hashes
are used, we are slightly more limited, since the components involving these need to
be placed in the same source groups (see Remark 6.1). In sum, while we have much
freedom in how we convert from the type-I to the type-III setting, we are bounded
by the correctness of the scheme.

Furthermore, as we mentioned, conversion from the type-I to the type-III setting
is not trivial, as any conversion heavily influences the efficiency of a scheme. Hence,
we ideally want to apply this conversion in the optimal way considering the opti-
mization approach (associated with the chosen design goal) and the correctness of
the decryption algorithm. For instance, if we want to convert some scheme to the
type-III setting such that it has the most efficient encryption algorithm (i.e., as in
the OE approach), then we attempt to place as many ciphertext components in the
first group G as possible. This consequently means that the key components that
are paired with these ciphertext components need to be placed in the second group
H. For the other approaches, the conversion is often more intricate, and requires
knowledge of the computational costs in the groups G, H and GT .
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For each optimization approach, we follow the same steps:

(1) We first list the secret key and ciphertext components, and order them in such
a way, that it is clear which components are paired during decryption such that
we can maintain correctness of decryption;

(2) We specify for each key-ciphertext component pair whether they need to be
exponentiated and whether they occur in a product during decryption;

(3) We determine the computational costs, for each key and ciphertext component,
of the key generation and encryption algorithm;

(4) To determine the computational costs of the decryption algorithm, the order of
the computations needs to be optimized (Section 6.2.4), which depends on the
curve, and possibly the distribution of the components;

(5) Based on this information, we can determine the best possible distribution of
the key and ciphertext components over the two source groups for a specific
optimization approach. We describe how this can be done below.

Remark 6.1: Full-domain hashes

Because no full-domain hashes H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → H exist
such that e(H1(att), h) = e(g,H2(att)) holds [GPS08], we need to place the
key and ciphertext components involving the FDH in the same group. As a
consequence, we have less flexibility in optimizing the schemes using FDHs for
its large-universeness.

Optimized encryption. Given the list of paired key-ciphertext components, the
strategy is simple: we place as many ciphertext components in the first source group
as possible. Because we need to place the ciphertext components involving the FDH
in G, we also place the key components involving an FDH in G, and thus place the
ciphertext components paired with these key components in H.

Optimized key generation. Similarly, given the list of paired key-ciphertext com-
ponents, the strategy is simple: we place as many key components in the first source
group as possible. Similarly as in the optimized encryption approach, we always place
ciphertext components involving an FDH in G, and thus place the key components
paired with these ciphertext components in H.



146 Chapter 6. ABE Squared: accurately benchmarking efficiency of ABE

Optimized decryption. To optimize decryption, we need to take a more careful
approach. First, we need to consider whether group elements need to be exponen-
tiated during decryption, because they occur in a shared-argument pairing product
(see Section 6.2.4), e.g.,

∏
j ê(K

′, Cj)
εj = ê(K ′,

∏
j C

εj
j ). In this case, our conver-

sion consists of placing the shared argument in H and the other—which needs to be
exponentiated—in G. For all key-ciphertext component pairs that do not occur in a
shared-argument pairing product, it does not matter whether the key or ciphertext
component is placed in G, as long as any potential exponentiation happens in the first
source group. In these cases, we will place, by default, the ciphertext component in
G, as it is oftentimes more important to optimize the encryption algorithm than the
key generation algorithm. If the application allows the use of precomputation tables
for all key components, we may also choose to place the key component in G, and
perform the exponentiations with a fixed-base exponentiation.

Balanced key generation/encryption. For a balanced efficiency of the key gener-
ation and encryption algorithms, we optimize the total key generation and encryption
costs. We do this by considering the computational costs for each key-ciphertext com-
ponent pair. For each pair, we place the component with the highest computational
costs in G, and the other in H. For instance, if the pair (K,C) (like in our example)
is such that the computation of K only requires a fixed-base exponentiation, and
the computation of C requires a multi-base exponentiation, then we place C in G
and K in H. In this approach, it is also important to consider whether the pairs
occur in a shared-argument pairing product during decryption. In this case, we place
the shared argument in H and the other components in G. Therefore, computing
the shared argument incurs only a constant cost in H (during key generation or en-
cryption), while computing the arguments on the other side incurs a linear cost in
G (during encryption or key generation), subsequently optimizing the total costs of
these computations.

Balanced encryption/decryption. Similarly, for a balanced efficiency of the en-
cryption and decryption algorithms, we optimize the total encryption and decryption
costs. This may be a slightly more complicated endeavor than the balanced key gen-
eration/encryption approach due to the more complicated nature of the optimized
decryption strategy. Like in this strategy, we need to take into account whether a
key-ciphertext component pair occurs in a shared-argument pairing product or not.
In this case, it is beneficial for the decryption costs to place the shared argument
in H and the other components in G. However, this may more negatively affect the
encryption costs than that it positively affects the decryption costs. For instance,
suppose that the coefficients εj are small, e.g., εj ∈ {0, 1} like in [LW10a]. Then,∏

j ê(C
′,Kρ(j))

εj can be computed as ê(
∏

j K
εj
ρ(j), C

′) to minimize the decryption
costs, requiring a linear number of multiplications in G. However, this ensures that
C ′ is in H, and therefore likely costs at least one exponentiation in H instead of G



6.2. Our framework: ABE Squared 147

Table 6.2. A list of the key-ciphertext component pairs and their costs incurred in com-
puting them during key generation and encryption, in terms of fixed-base exponentiations
(FBE) and two-base exponentiations (2-MBE). For the decryption costs, we list whether the
pairing is indexed and whether it needs to be exponentiated.

Key
component Costs Ciphertext

component Costs Decryption
Indices Exponentiation

K FBE C ′ FBE - -
K ′ FBE C1,j (j ∈ [n1]) 2-MBE j ∈ Υ ⊆ [n1] εj

Katt (att ∈ S) FBE C2,j (j ∈ [n1]) FBE j ∈ Υ ⊆ [n1] εj

(depending on the computational costs of C ′). If the expected average costs incurred
by the multiplications needed during decryption is lower than the costs incurred by
computing C ′, we might want to place C ′ in G and place Kρ(j) in H.

6.2.7 Example: type-converting Wat11
We explain our type-conversion techniques through an example: by converting the
CP-ABE scheme by Waters (Wat11) [Wat11] from the type-I to the type-III setting.
We first show how to convert the small-universe version of Wat11, and then argue
how these conversions translate to the large-universe version of Wat11. A description
of the Wat11 scheme can be found in Construction 2.1.

Listing the key and ciphertext components. To convert the scheme to the
type-III setting, we first consider which key components need to be paired with which
ciphertext components (see Table 6.2). In this way, we can ensure that each pair has
exactly one component in each source group.

Optimized encryption and key generation. For the optimized encryption and
key generation approaches, it is clear in which source groups the components need
to be placed. Because the scheme does not involve hashing into the group, we have
much freedom. For the optimized encryption approach, we can simply place all cipher-
text components in G, and the key components in H. Conversely, for the optimized
key generation approach, we can place all key components in G and the ciphertext
components in H.

Balanced key generation/encryption. For a more balanced approach in the ef-
ficiency of key generation and encryption, we take into account the number of com-
ponents on the “other side of the pairing” during decryption. For instance, if one
places K ′ in G, then all C1,j need to be placed in H, blowing up the encryption costs
considerably. Hence, we place K ′ in H and C1,j in G to make the key generation and
encryption costs more balanced. For the (Katt, C1,j) key-ciphertext component pair,
there is no such trade-off, as both cost one fixed-base exponentiation. In this case, we
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favor the encryption algorithm (as mentioned in Section 6.2.6), as it is probably run
more often than the key generation algorithm. (Note, however, that one may want to
take a different approach, and favor the key generation over the encryption algorithm
instead.) For this reason, we place C1,j in G and Katt in H. Thus, the optimized
encryption and the balanced key generation/encryption efficiency approaches yield
the same constructions, since all key components are placed in H.

Optimized decryption. To optimize the decryption algorithm, we need to consider
the best order of the operations performed during decryption, i.e.,

C/

ê(C ′,K) ·

ê

∏
j∈Υ

C
εj
1,j ,K

′

 /
∏
j∈Υ

ê
(
C

εj
2,j ,Kρ(j)

) .

Because a pairing operation is usually one of the most expensive operations, we want
to minimize the use of these. Consequently, we use a shared-argument pairing and
place the exponentations in G (Section 6.2.4). To ensure this, it is therefore better
to put C1,j in G and K ′ in H. For the other product of pairing operations, i.e.,∏

j∈Υ ê
(
C

εj
2,j ,Kρ(j)

)
, it does not matter in which groups Kρ(j) and C2,j live, as we

can exponentiate in G, regardless of whether Kρ(j) or C2,j is in it. If, on the other
hand, one is willing to use precomputation tables for all key components Katt, then
we can speed up decryption by placing Katt in G. Because this may require a large
amount of precomputation space, this may, however, not be desirable in practice.
Hence, we do not use precomputation, and, as mentioned in Section 6.2.6, we choose
to favor the encryption efficiency over the key generation efficiency. We thus place
the ciphertext component C2,j in G and Katt in H.

Balanced encryption/decryption. Because the type conversion is the same for the
optimized encryption and decryption approaches, it is, by extension, also the same
for the balanced encryption/decryption approach. This is because, for each key-
ciphertext component pair, we chose the best distribution of the two source groups
with respect to the encryption and decryption efficiency. This therefore also yields
the best efficiency trade-offs for the two.

Overview of the distributions for each optimization approach. In Table 6.3,
we summarize the distributions of the key and ciphertext components for each ap-
proach. In particular, it shows that the distributions are the same for the optimized
encryption, optimized decryption, balanced key generation/encryption and balanced
encryption/decryption approaches.

Wat11-IV: the large-universe variant. The large-universe variant of the Waters
scheme (Wat11-IV) [Wat08] replaces the generator gbatt by the output of a hash
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Table 6.3. The distributions of the key and ciphertext components of Wat11-I over the
groups G and H, for each optimization approach, i.e., optimized encryption (OE), opti-
mized key generation (OK), optimized decryption (OD), balanced key generation/encryption
(BKE) and balanced encryption/decryption (BED).

Key Group Ciphertext Group
component OE OK OD BKE BED component OE OK OD BKE BED

K H G H H H C ′ G H G G G
K ′ H G H H H C1,j G H G G G
Katt H G H H H C2,j G H G G G

Table 6.4. The distributions of the key and ciphertext components of Wat11-IV over the
groups G and H, for each optimization approach.

Key Group Ciphertext Group
component OE OK OD BKE BED component OE OK OD BKE BED

K H G H H H C ′ G H G G G
K ′ H H H H H C1,j G G G G G
Katt G G G G G C2,j H H H H H

function, i.e., H(att), where H : {0, 1}∗ → G denotes a hash function that maps
arbitrary strings randomly in the group G. The advantage of this is that the scheme
can support any arbitrary string as attribute without requiring to change the master
public key to be updated. Compared to the original, small-universe variant of the
scheme, little needs to change. However, the use of a hash into the group gives us
a little less freedom in the conversion from the type-I to the type-III setting. By
Remark 6.1, we necessarily place the key and ciphertext components involving the
hash in the same source group. For the optimized encryption and optimized key
generation approaches, it is evident that these therefore need to be placed in the first
source group (see Table 6.1). For optimized decryption, it follows from the (K ′, C1,j)
key-ciphertext component pair—which occur in a shared-argument pairing product—
that the components involving the hash need to be placed in the first source group.
That is, K ′ needs to be placed in H because it is the shared argument in the shared-
argument pairing product, while C1,j—which involves the hash—needs to be placed
in G. By extension, this requires Katt to be placed in G as well, because it involves
a hash. The distribution of the key and ciphertext components is therefore almost
entirely fixed for all optimization approaches. We can only choose the distribution
of components K and C ′. Because these incur a constant cost, the key generation,
encryption and decryption costs are almost entirely fixed as well. Table 6.4 describes
the distributions of the components over the two source groups of Wat11-IV. As it
shows, the distributions are the same for the pairs (K ′, C1,j) and (Katt, C2,j). For the
pair (K,C ′), the distribution is the same as for Wat11-I.
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6.2.8 Selecting the best elliptic curve for a specific goal
To fully optimize a scheme, it is important that the best curve is selected for each
scheme and for each design goal. In general, this may not be the same curve for each
scheme and each design goal, as the different choices of curves provide different trade-
offs in efficiency. For instance, BN382 provides efficient hashing in the two source
groups, while BLS12-381 provides efficient exponentiations and pairing operations
[Ara17]. It may therefore be the case that ABE schemes that require many hashing
operations are more efficient on the BN382 curve, while schemes that do not require
these perform better on BLS12-381 curves. More generally, curves exist that provide
more efficient arithmetic in G [CDS20] or that provide more efficient products of
pairings [GF16]. However, these are unfortunately not supported by RELIC.

To determine the optimal curve for each scheme and each design goal, we compare
the efficiency of the scheme on several curves providing the same level of security. To
this end, we compare the computational costs of several ABE schemes on the curves
providing the same level of security supported by RELIC.

6.3 Benchmarking
We show how our framework can be applied to several existing ABE schemes.

6.3.1 The schemes
In this chapter, we analyze and implement several selectively secure ciphertext-policy
ABE schemes. We have motivated our choice to implement CP-ABE schemes in
Section 6.1.2, and we will motivate the choice to implement selectively secure schemes
below. The schemes that we implement are the previously considered small and
large universe variants of Wat11 called Wat11-I and Wat11-IV (Constructions 4.1
and 4.7), RW13 (Construction 4.2), and the small and large-universe variants of AC17
(Constructions 4.3 and 4.8). We use our compiler in Section 4.6 to achieve provably
selectively secure schemes. Descriptions of the type-converted variants of the schemes
can be found in the paper [dlPVA22].

On the security of these schemes. We briefly discuss the security of the imple-
mented schemes.

Selective versus full security. We consider the selectively secure variants of Wat11,
RW13 and AC17, because this yields a cleaner comparison of the schemes on a struc-
tural level. In contrast, many fully secure variants of these schemes exist, which
are similar to Wat11, RW13 and AC17 on a structural level, but these differ in the
underlying groups. For instance, LOSTW10 [LOS+10] is a fully secure variant of
Wat11 and is instantiated in composite-order groups. For the same security level,
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LOSTW10 performs one to two orders of magnitude worse than Wat11, which can
be instantiated in a prime-order group [Gui13]. Other fully secure variants of Wat11
[Att19, KW19b], which allow for instantiation in prime-order groups, might simply use
different underlying group structures, which may affect the efficiency as well. How-
ever, this difference in efficiency might then be (partially) attributed to the choice
of underlying groups, and not necessarily the different structures of the schemes.
For a fair comparison of two structurally different schemes, one could first compare
the efficiency of the selectively secure variants, instantiated in prime-order groups.
Then, one can extrapolate the comparison to the full-security setting by considering
the efficiency of the chosen underlying groups, which can be chosen the same if all
the compared schemes have a fully secure counterpart in the same framework, e.g.,
[Att14a, Wee14, CGW15, Att16, Att19]. Note that this is the case for Wat11, RW13
and AC17, which have instantiations in the pair encodings framework (Chapter 4).

Security in idealized models. The security of the implemented schemes depends on ide-
alized models, such as the random oracle model (ROM) [BR93] and the generic group
model (GGM) [Sho97]. In particular, the large-universe variants of Wat11 and AC17
model the FDH as a random oracle in the proofs. Furthermore, the security of all three
schemes depends on a q-type assumption, i.e., the (d1, d2)-parallel DBDH assumption
(Definition 4.9). As shown in Lemma 4.5, we lose at most log2(

√
d1 + d2 + 1) bits

of security, where d1 and d2 are as in the selective proofs of Lemmas 4.3 and 4.4.
Because the maximum policy size in this chapter is 100, the maximum security loss
is therefore at most 4 bits for Wat11 and AC17 and 7 bits for RW13.

6.3.2 Implementation
We have implemented the schemes in RELIC [AGM+], and benchmarked the imple-
mentations using the AMD Ryzen 7 PRO 4750 processor with power management
disabled (one single core) and throttle at max. frequency (4.1 GHz). We refer to the
paper [dlPVA22] for more information on the implementations.

6.3.3 Performance analysis of our implementations
We analyze the performance of the implementations in our framework and compare it
with those in existing frameworks such as Charm [AGM+13] and OpenABE [Zeu20].
Our goal with this comparison is not necessarily to illustrate that our implementations
are faster than those of Charm and OpenABE. Rather, we want to show that the
choice of optimization approach as well as the use of all available optimized arithmetic
influences this analysis. Not consistently and systematically using these may result
in an unfair comparison of multiple schemes.

Comparing our framework with Charm and OpenABE. One of the main goals
of our framework is to fully optimize the efficiency of all the schemes with respect to
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Table 6.5. Comparison of the computational costs in milliseconds (for a processor with a
frequency of 4.1 GHz) of the Charm and OpenABE implementations of Wat11 and RW13,
and our implementations, on the BN254 curve.

Key generation Encryption Decryption
Scheme/ # of attributes # of attributes # of attributes
Variant 1 10 100 1 10 100 1 10 100
Wat11-I
Charm 1.5 5.1 41.3 4.6 19.4 166.6 27.5 113.6 1010.4

OE 0.1 0.3 2.8 0.1 0.6 5.3 0.2 0.6 5.1
OK 0.0 0.2 1.3 0.2 1.3 11.7 0.2 0.6 6.0

RW13
Charm 2.4 11.8 104.9 5.0 21.9 189.2 40.3 332.0 3255.5

OE 0.1 0.6 5.8 0.1 0.8 7.0 0.2 1.0 9.7
OK 0.1 0.3 2.8 0.2 1.5 14.5 0.2 1.1 11.0

Wat11-IV
OpenABE 0.2 0.6 4.7 0.3 1.5 14.0 0.7 2.6 23.0

OE 0.1 0.4 3.9 0.2 0.9 8.3 0.2 0.6 5.0
OK 0.1 0.4 4.0 0.2 0.9 8.4 0.2 0.6 5.2

the same design goal. To show how effective this is compared to existing works, we
have run benchmarks of the Charm [AGM+13] implementations of Wat11-I and RW13
as well as the implementations of our optimizations. We have also run benchmarks
of the OpenABE [Zeu20] implementation of Wat11-IV as well as the implementations
of our two optimizations. Because the implementations in Charm and OpenABE
support, at best, the BN254 curve [BN05], we compare the computational costs of
the schemes on this curve. The results in Table 6.5 show that our implementations
greatly improve on the implementations of Charm, the costs being at least one order of
magnitude lower. For decryption, our implementations perform even a factor 100-300
faster than the Charm implementation. In particular, Charm takes several seconds to
execute decryption for large policies with RW13, which increases even further if more
up-to-date curves such as BLS12-381 are used. In contrast, our implementations
never require more than 15 milliseconds to execute. Compared to the OpenABE
implementation of Wat11-IV, our implementations perform roughly equally efficient
in the key generation, a factor 1.6 faster in the encryption algorithm, and a factor 4
faster in the decryption.

In addition, Table 6.5 illustrates that comparing optimized implementations of the
schemes yields a different comparison of two schemes. For instance, the benchmarks
for Wat11-I and RW13 show that Wat11-I outperforms RW13 in all algorithms. We
show in Section 6.3.4 that Wat11-IV—the large-universe variant of Wat11-I—is actu-
ally slower than Wat11-I, and is even outperformed by RW13 in the key generation
and encryption algorithms for the OK and OE approaches, respectively. This dif-
ference in results illustrates that it is important to compare two implementations of
schemes with the same properties, which are subsequently optimized with respect to
the same goals. If this is not done, then one might unjustifiably draw the conclusion
that Wat11-IV is a more efficient scheme (given any design goal) than RW13.
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Table 6.6. Comparison of the computational costs expressed in 103 clock cycles for each
scheme and optimization approach (OA) for 100 attributes, on their most efficient curve in
the [125, 128]-bit security range. For each scheme, we determine the most efficient variant,
and the increase (in percentages) that the other variants incur compared to the most efficient
variant. The lowest costs are typeset in bold.

Scheme OA Curve Key generation Encryption Decryption
Costs Increase Costs Increase Costs Increase

Wat11-I OE BLS12-381 25653 143.0% 39951 - 58515 -
OK BLS12-381 10555 - 101181 153.3% 63151 7.9%

Wat11-IV OE BLS12-381 42275 0.3% 77641 - 58290 -
OK BLS12-381 42135 - 77898 0.3% 58441 0.3%

RW13 OE BLS12-381 51401 137.3% 54491 - 112072 -
OK BLS12-381 21657 - 128221 135.3% 118998 6.2%

AC17

CP BLS12-381 10696 0.6% 29352 0.0% 9027 123.8%
OE BLS12-381 25471 139.5% 29348 - 13736 240.6%
OK BLS12-381 10635 - 76067 159.2% 13696 239.6%
OD BN382 16184 52.2% 41776 42.3% 4033 -

AC17-LU

CP BLS12-381 42632 1.7% 52752 1.1% 9106 124.4%
OE BLS12-381 42196 0.7% 52176 - 9060 123.3%
OK BLS12-381 41913 - 52326 0.3% 9076 123.7%
OD BN382 45093 7.6% 59276 13.6% 4058 -

Comparing schemes for different optimizations. In Section 6.2.5, we explained
that the chosen design goal influences the optimization approach, including the con-
version strategy from the type-I to the type-III setting. To this end, we have converted
each scheme with respect to the different design goals. We illustrate the trade-offs
incurred by the conversions in Table 6.6. It shows that, indeed, the variant of a
scheme that is optimized with respect to a specific algorithm also outperforms the
other variants in this algorithm. Note that, as expected, for the schemes without an
FDH, these differences are much more pronounced than the schemes with an FDH.

6.3.4 Proof of concept: comparison of large-universe schemes
We also show how the benchmarks can be used in the comparison of different schemes.
We do this by comparing the computational costs of the schemes for the same opti-
mization approaches. Specifically, we compare the large-universe schemes, Wat11-IV,
RW13 and AC17-LU with one another to investigate which of the three performs best
with respect to some chosen optimization approach. Table 6.7 shows that AC17-LU
outperforms the other two in almost all optimizations and the subsequent implementa-
tions of the algorithms. The only exception is the optimized key generation approach,
where RW13 provides the most efficient key generation algorithm, outperforming the
other two schemes by a factor 2. It therefore seems that, currently, RW13 is the
best choice when the design goal is to have an optimized key generation algorithm.
For the other approaches, it is best to use AC17-LU. Notably, RW13 outperforms
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Table 6.7. Comparison of the computational costs for each large-universe scheme and
optimization approach (OA) for 100 attributes, on their most efficient curves in the [125, 128]-
bit security range. For each optimization approach, we determine the most efficient scheme,
and the increase (in percentages) that the other schemes incur compared to the most efficient
variant (which costs are typeset in bold). The costs are expressed in 103 clock cycles.

OA Scheme Curve Key generation Encryption Decryption
Costs Increase % Costs Increase % Costs Increase %

OE
Wat11-IV BLS12-381 42275 0.2% 77641 48.8% 58290 543.4%

RW13 BLS12-381 51401 21.8% 54491 4.4% 112072 1137.1%
AC17-LU BLS12-381 42196 - 52176 - 9060 -

OK
Wat11-IV BLS12-381 42135 94.6% 77898 48.9% 58441 543.9%

RW13 BLS12-381 21657 - 128221 145.0% 118998 1211.2%
AC17-LU BLS12-381 41913 93.5% 52326 - 9076 -

OD
Wat11-IV BLS12-381 42275 - 77641 42.5% 58290 1336.5%

RW13 BLS12-381 51401 21.6% 54491 - 112072 2661.9%
AC17-LU BN382 45093 6.7% 59276 8.8% 4058 -

Wat11-IV in the OE, OK and BKE (which yields the same computational costs as
OD) approaches, and thus constitutes not only a scheme that is interesting for its
theoretical properties, but also for its efficiency.

6.4 Future work
This work provides the basis for further research at various levels.

6.4.1 Automating our framework
Our type-conversion methods are heuristic and manual. The reason why they are
heuristic is because the conversion methods are inextricably intertwined with the
efficiency of the arithmetic not only provided by the chosen curve, but also by the order
of the computations and the implementation of the arithmetic (which might in turn
depend on the architecture of the processor). Currently, automating our conversion
techniques is not trivial. Due to the heuristic nature of our given methods (which
requires us to circle back to earlier design choices to see if these need to be adjusted), it
may be more difficult to automate than like in [AGOT14, AGH15, AHO16a]. Instead,
one could take a different approach. First, one could make a theoretical estimation
of the computational costs of the arithmetic and group operations, for all possible
pairing-friendly curves at the desired security level. Second, one could make a list of
all possible distributions of the key and ciphertext components over the source groups.
For each distribution and pairing-friendly curve, one can then determine the most
efficient algorithms for the group operations and optimize the order of computations
(which is not a trivial effort either). Given some optimization goal, the most efficient
distribution can then be selected to be the optimal type conversion.
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6.4.2 More pairing-friendly curves
In our analysis, we have only considered two curves in the [125, 128]-bit security
range and two curves in the [129, 135]-bit security range. As we mentioned in the
introduction, many pairing-friendly groups exist that provide at least 128 bits of
security [Gui20a]. Notably, the KSS16 curves [KSS08] provide efficient arithmetic in
the first source group and efficient multi-pairing operations [GF16, Ara17, CDS20].
These might be especially beneficial for schemes such as RW13, which provide much
freedom with respect to their type conversion. In order to improve the benchmarks
in this framework, more curves need to be supported by RELIC. Alternatively, a
framework or library can be set up with the estimated efficiency of frequently-used
arithmetic of the curves providing 128 bits of security listed at [Gui20a]. This would
also help in any automated efforts.

6.4.3 Improving usability, validity and verifiability
To simplify the accurate comparison of schemes even further, it is important to make
the framework more usable for ABE designers. As a result, cryptographers can easily
compare their new scheme with existing ones in a transparent way without requiring
a deep understanding of cryptographic engineering. One could make the framework
more usable by providing a functionality that allows designers to specify, e.g., an
encoding of a scheme (rather than a full-fledged description). In this way, it also
becomes easier to analyze the schemes with respect to other metrics, such as validity
and verifiability, e.g., either manually [VA21] or even automatically [ABGW17].

6.4.4 Implementing fully secure ABE
We have implemented only the selectively secure variants of Wat11, RW13 and AC17.
While this provides a reliable comparison of the structure of the schemes, in practice,
we prefer the use of a fully secure scheme. Since several frameworks exist that provide
efficient generic conversions to the full-security setting (Chapter 4), it would be impor-
tant to benchmark the underlying groups used in such conversions. In this way, the
most efficient security-conversion technique can be selected. Note that those generic
conversions are also compatible with the aforementioned encodings (Section 6.4.3).

6.4.5 Using other algorithms for group operations
We have used RELIC for the implementations of the group operations used in the
ABE schemes. As mentioned in Section 6.2.1, RELIC does not support all available
algorithms, e.g., it does not support fixed-argument pairings. Furthermore, using
precomputation tables in multiple-base exponentiations may significantly speed up the
encryption algorithm [Möl01]. Conversely, implementing ABE in resource-constrained
devices may require the use of different optimizations [FA17].
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6.4.6 Other pairing-based ABE, and related primitives
Our methods are mostly targeted at optimizing pairing-based ABE of the specific
structure considered in this chapter. While this covers many ABE schemes, some
schemes exist that do not have this exact structure, e.g., [LW11a, RW15]. Further-
more, our methods are also applicable to other pairing-based primitives that satisfy
the targeted structure [AC17b, Att19], e.g., identity-based encryption [Sha84, BF01]
and identity-based broadcast encryption [Del07]. Possibly, our framework can be ex-
panded to cover pairing-based cryptography for other structures (and primitives) as
well.

6.5 Conclusion
We have presented ABE Squared, a framework for accurately benchmarking efficiency
of attribute-based encryption. Concretely, this framework aims to optimize the theo-
retical descriptions of ABE schemes for some chosen design goal by considering four
optimization layers. These layers consider the arithmetic and group operations, the
chosen pairing-friendly group, the order of the computations and the conversion tech-
niques. By taking into account all layers during the optimization of a theoretical
description, we are able to attain more efficient implementations. More specifically,
we have devised several optimization approaches that aim to accomplish some chosen
design goal, e.g., optimized key generation, encryption or decryption. By optimizing
multiple schemes with respect to the same goal, they can be compared more fairly.
Because existing conversion techniques did not allow us to, e.g., optimize the decryp-
tion algorithm, we have given new heuristic and manual techniques that facilitate
this. Unlike other existing works, these conversion techniques take into account the
other three optimization layers.

To show the effectiveness of our framework, we have optimized and implemented
five schemes: Wat11-I, Wat11-IV, RW13, AC17 and AC17-LU. These implementations
show that, indeed, the efficiency of the schemes depends heavily on the design goals
and subsequent optimization approaches. For example, Charm shows that Wat11-
I is generally faster than RW13. This may result in the idea that Wat11-IV, the
large-universe variant of Wat11-I, is also faster than RW13, because it is similar. In
contrast, we have shown that RW13 outperforms Wat11-IV with respect to the opti-
mized encryption and optimized key generation approaches. This illustrates clearly
that taking into account any such design goals in the implementation and bench-
marks is crucial in the comparisons as well. Therefore, the ABE Squared framework
provides an instrumental contribution in the benchmarking—and eventually, in the
deployment—of ABE.
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Part III

New constructions and generic
transformations
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Chapter 7

GLUE: generalizing unbounded ABE for
flexible efficiency trade-offs

CP-ABE is a versatile primitive that has been considered extensively to se-
curely manage data in practice. Especially completely unbounded schemes are
attractive, because they do not restrict the sets of attributes and policies. So
far, any such schemes that support negations in the access policy or that have
online/offline extensions have an inefficient decryption algorithm.

In this chapter, we propose GLUE (Generalized, Large-universe, Unbounded
and Expressive), which is a novel scheme that allows for the efficient imple-
mentation of the decryption while allowing the support of both negations and
online/offline extensions. We achieve these properties simultaneously by un-
covering an underlying dependency between encryption and decryption, which
allows for a flexible trade-off in their efficiency. For the security proof, we de-
vise a new technique that enables us to generalize multiple existing schemes.
As a result, we obtain a completely unbounded scheme supporting negations
that, to the best of our knowledge, outperforms all existing such schemes in
the decryption algorithm.

7.1 Introduction
To securely and efficiently implement access control on data, especially pairing-based
CP-ABE proves to be an attractive primitive [BSW07, KL10, SRGS12]. In 2018, ETSI
published two technical reports on ABE [ETS18a, ETS18b], which include detailed
descriptions of use cases, varying from cloud settings to mobile networks. In such
settings, the computational resources of the key generation, encryption and decryp-
tion devices may vary. Thus, different use cases may require schemes with different
efficiency trade-offs.

According to ETSI, ABE schemes should be efficient and secure. Interestingly,
while ETSI proposes ABE to be used to enforce ABAC [HFK+19] on data, it explicitly
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notes that ABE cannot satisfactorily support it, because ABE cannot support nega-
tions efficiently [ETS18b]. Indeed, the decryption algorithm of most ABE schemes
supporting negations is incredibly expensive [OSW07, LSW10, YAHK14, Att19]. Re-
cently, some interesting progress was made, yielding significant speed-ups in decryp-
tion time [TKN20, AT20]. However, those schemes still have a costly (although less
costly) decryption [AT20] or restrict the attribute sets [TKN20].

In this chapter, we introduce a new scheme that enables the realization of the
following properties:

(1) Large-universe: any string can be used as an attribute;

(2) Unbounded: no restrictions on, e.g., the sizes of the policies or attributes sets,
or the number of times that an attribute may occur in the policy;

(3) Expressive: support of MSPs, ensuring that policies represented as Boolean
formulas consisting of conjunctions and disjunctions can be supported;

(4) Non-monotone: support of non-monotone span programs, ensuring that the
policies can use negations;

(5) Compact: the key and ciphertext sizes depend, in the worst case, on the size
of the set or the length of the policy.

Additionally, this scheme offers a flexible choice in the encryption/decryption effi-
ciency trade-off during the setup of the parameters. In this way, the scheme can be
fine-tuned to take into account the computational resources of the key generation,
encryption and decryption devices. In particular, this feature allows for significant
speed-ups in the decryption compared to other schemes that also satisfy the listed
properties.

Achieving properties (1)-(5) simultaneously. Only a limited number of ex-
isting schemes support properties (1)-(5) simultaneously (Chapter 2). In fact, all
pairing-based schemes that provide non-monotonicity and large-universeness use a
polynomial-based hash—also known as a “Boneh-Boyen (BB) hash” [BB04]—that
maps arbitrary attribute strings into the scheme (Sections 2.5.5 and 2.5.7). Of those
schemes, the only ones that are completely unbounded [LSW10, YAHK14, Att19,
AT20] are based on LW11b (the KP-ABE version) [LW11b] and RW13 (the CP-
ABE version) [RW13] (Table 7.1). However, all those schemes have an inefficient
decryption compared to ABE schemes that use a full-domain hash (FDH) to achieve
large-universeness (Section 6.3.4). For this reason, such schemes are often favored in
practice, despite their inability to support negations [ETS18a, ETS18b]. Neverthe-
less, since supporting negations fosters the expressivity of ABE, we aim at improving
the decryption efficiency of schemes using a BB hash.
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Table 7.1. Comparison of large-universe schemes supporting (N)MSPs. For each scheme,
we list whether it is unbounded (in the sets S and policies A, and the number of attribute
and label re-uses), whether it supports negations or has a provably secure extension that
supports negations, and whether it is compact. Note that we have only listed schemes that
have a unique associated pair encoding.

Scheme KP/CP Unbounded Negations Compact|S| |A| ARU LRU OSW OT OSWOT
[GPSW06a, §5] KP ✗ ✓ ✓ ✓ ✓ [OSW07] ✗ ✗ ✓

[BSW07] CP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
[ALdP11] KP ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

[Wat11, §6] CP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
[Wat08, §B] CP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

[LW11b, RW13] KP ✓ ✓ ✓ ✓ ✓ [LSW10] ✓ [Att19] ✓ [AT20] ✓
[OT12] CP ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
[RW13] CP ✓ ✓ ✓ ✓ ✓ [YAHK14] ✓ [Att19] ✓ [AT20] ✓

[AHM+16] KP ✓ ✓ ✓ ✓ ✓ [ALdP11] ✗ ✗ ✗
[AC16] CP ✗ ✗ ✓ ✓ ✓ [Att19, Amb21] ✓ [AT20, Amb21] ✓ [AT20, Amb21] ✗
[AC17a] CP(/KP) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

[ABGW17, §5.3] KP/CP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
[Att19, §A-I] CP(/KP) ✓ ✓ ✓ ✓ ✓ ✗ ✓ [AT20] ✓
[Att19, §A-II] CP(/KP) ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
[Att19, §A-III] CP(/KP) ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

[TKN20] KP/CP ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓
GLUE CP(/KP) ✓ ✓ ✓ ✓ ✓ ✓ ✓[AT20] ✓

Note: ARU = attribute re-use; LRU = label re-use (in the sets and policies)

Improving decryption efficiency of schemes using a BB hash. To determine
whether we can improve on the decryption efficiency of the existing schemes satisfy-
ing properties (1)-(5), we investigate all schemes using a BB hash to achieve large-
universeness. In particular, if we consider all such schemes, then we see that a scheme
that is unbounded, compact and costs less than one pairing operation per attribute
during decryption does not exist yet (Figure 7.1). Because pairing operations are the
most expensive operations in pairing-based ABE, it is therefore important to mini-
mize the use of those. In this chapter, we aim to achieve this: we provide a scheme
that satisfies properties (1)-(5), while requiring less than one pairing operation per
attribute during decryption.

7.1.1 Our contributions
We first give a high-level overview of our contributions. Then, we provide more
(technical) details about these contributions.

• New construction: We present a new unbounded large-universe scheme using
a BB hash (thus avoiding random oracles). Its encryption/decryption efficiency
trade-off can be fine-tuned by taking into account the computational resources
of the devices.

• Generalizations: Concretely, the scheme can be considered a generalization of
two large-universe schemes: the Rouselakis-Waters (RW13) scheme [RW13] and
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Figure 7.1. Overview of large-universe schemes using a BB hash.

the bounded large-universe scheme without random oracles by Waters (W11b)
[Wat08]. This generalization also illustrates a deeper connection among various
designs.

• Security proof: We develop new proof techniques to ensure that the ran-
domness provided by a BB hash can be simultaneously used for the keys and
ciphertexts. To the best of our knowledge, we are the first to achieve this in the
unbounded setting, and in the full-security setting.

• Extensions: We provide three extensions to the basic scheme: one online/offline
[HW14] and two non-monotone extensions supporting OT-type and OSW-type
negations, respectively. Notably, we obtain an online/offline ABE scheme and
a scheme supporting OSW-type negations with the most efficient decryption al-
gorithms. This enables us to support OSWOT-type negations more efficiently,
which is the most desirable in practice.

7.1.2 New construction: GLUE
We focus on three schemes that satisfy at least two out of the three depicted properties
(see Figure 7.1): W11b [Wat08], RW13 [RW13] and AHM+16 [AHM+16]. Those three
schemes provide a good starting point for GLUE, our new scheme which satisfies all
required properties. Intuitively, we apply the partitioning techniques of AHM+16
to combine the unbounded RW13 and the bounded W11b that allows for efficient
decryption. However, as we show later, for the secure combination of these techniques,
GLUE requires a more intricate approach.



7.1. Introduction 163

We give a high-level description of the partitioning approach as introduced by
AHM+16. First, we partition the attribute sets into smaller subsets. Then, we apply
a (bounded) scheme with efficient decryption (in their case, ALP11 [ALdP11]) to each
subset. Lastly, we use the unbounded techniques of e.g., RW13 or LW11b [LW11b]
to securely connect the subsets. In this way, the decryption costs of the scheme
can be decreased. Unfortunately, this comes at a cost. Because bounded schemes
typically have a more expensive encryption, the encryption costs are increased. From
a broader perspective, this approach creates a scheme with a (flexible) efficiency trade-
off feature. As we will show later, this trade-off is determined by some parameter n.
The encryption costs are higher by a factor n than those of unbounded schemes such as
RW13, whereas the decryption costs are lower by this factor. Because this parameter
n can be chosen during setup, it can be fine-tuned for the given practical context.
If decryption needs to be efficient (which is often the case), one can choose larger n
than in cases in which encryption needs to be efficient.

The main reason why we achieve the compactness property, contrary to AHM+16,
is due to the bounded scheme that is used. Because AHM+16 uses ALP11 [ALdP11],
a scheme with constant-size ciphertexts and large keys whose sizes depend on the
parameter n, its keys are large and its key generation is very expensive. Moreover,
although the number of pairing operations required during decryption decreases, the
number of exponentiations grows by a factor n for each matching attribute. As
we will show, this means that AHM+16 decryption is not much more efficient than
unbounded schemes such as RW13. As a solution, we use the W11b scheme, whose
decryption costs consist of a constant number of pairing operations and no additional
exponentiations. In this way, we achieve a much better speed-up in decryption, and
since W11b is compact, the key sizes and key generation costs are not affected.

7.1.3 Generalizing RW13 by generalizing the hash
The main difference between the partitioning approach as applied by AHM+16 and
us is that we have to partition both the key sets and the ciphertext policies. The rea-
son for this is that AHM+16 uses ALP11, which is bounded in only the ciphertexts,
whereas we use W11b, which is bounded in both the keys and ciphertexts. By ex-
tension, we need to apply some technique to connect the resulting key and ciphertext
“parts”. However, we will show that the security proof of W11b does not generalize
to the unbounded setting, meaning that we have to devise a new proof technique for
W11b that does generalize. Furthermore, it is not possible to apply the exact same
approach as that of AHM+16. In particular, to prove security, they embed the scheme
in the fully secure key-policy doubly-spatial encryption [Ham11] scheme in [Att14a],
and then, they apply the embedding lemma [AHM+16]. We cannot use this approach,
because, to the best of our knowledge, the W11b scheme cannot be embedded in an
existing scheme in a similar fashion.
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Hence, we take a slightly different approach: we generalize RW13 by generalizing
its specific instantiation of the BB hash. A BB hash is a hash as in the polynomial-
based approach to support large universes (Section 2.5.5), i.e., Fn(xatt) =

∏n
i=0 B

xi
att

i ,
where the generators Bi = gbi implicitly embed the coefficients of the polynomial
fn(xatt) =

∑n
i=0 bix

i
att. Where RW13 (and its unbounded derivatives [HW14, Att19])

uses an implicit 1-degree polynomial, we use an implicit n-degree polynomial, like
W11b [Wat08]. However, we will show that simply replacing the 1-degree polynomial
by some n-degree polynomial does not immediately yield a secure scheme. To solve
this, we replace another public-key variable used in the scheme by a polynomial.

7.1.4 Security proof
One of the main difficulties of our scheme is proving the selective and co-selective
property. In the first place, proving security is difficult due to the lack of provably
secure schemes that use the randomness provided by the BB hash for both the keys
and ciphertexts. To the best of our knowledge, previously, only W11b [Wat08] used
the hash for both the keys and ciphertexts, but only in the bounded setting and in
the selective-security model. However, the proof does not seem to readily generalize
to the unbounded setting (see the full version [VA22b]). Hence, we develop a novel
technique to prove security. We do this, in part, by combining several techniques.

• Proof techniques using the hash for the keys: We generalize the proof
techniques used by Agrawal and Chase in [AC17b] to prove full security of
their scheme in [AC16]: the AC16 [AC16] scheme. AC16 is a CP-ABE scheme
with constant-size ciphertexts, in which the randomness provided by the Boneh-
Boyen hash is used for the keys. In the selective proof, the polynomial embedded
in the public keys needs to be used by the secret keys after the public keys are
generated. The proof does this by embedding a “reprogrammable” polynomial
in the public keys. We call these polynomials to be reprogrammable in the sense
that the randomizers of the secret keys can later program it to a suitable target
polynomial. We use this general strategy for the keys.

• Proof techniques using the hash for the ciphertext: Even though the
W11b [Wat08] proof does not generalize to the unbounded setting, we are able
to use a part of the proof strategy. In the selective proof, the implicit polynomial
embedded in the public key is “programmed” to take into account the attributes
that will be used in the challenge ciphertext. We use this general strategy for
the ciphertexts.

• Unbounded proof techniques: One of the bottlenecks of the two afore-
mentioned strategies is that they are bounded approaches: they use only one
randomizer for the keys and one for the ciphertexts. To make them unbounded,
we use the general approach of the RW13 [RW13] proof. This proof gives us a
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rough idea of how the implicit polynomial and the randomizers should be pro-
grammed. Furthermore, it shows us how to use the polynomial an unbounded
number of times: using layering and individual randomness techniques allows
us to select the required instance of the polynomial.

Another bottleneck is that the “programmed” and “reprogrammable” approaches are
orthogonal, and can therefore not be used simultaneously in the same polynomial
without applying a trick. Presumably, this is also the reason why the W11b proof
uses the programmed approach for both the keys and the ciphertexts, and applies
an algebraic argument to ensure that everything can be simulated as required. We
eliminate this bottleneck and combine all these proof techniques, by splitting the
polynomial into the product of two smaller polynomials: one “programmed” poly-
nomial and one “reprogrammable” polynomial. For the selective proof, we use the
programmed polynomial for the ciphertexts and the reprogrammable polynomial for
the keys. For the co-selective proof, the roles of the polynomials are reversed.

7.1.5 Practical extensions
We provide several extensions to our scheme. Because we prove security in the AC17
[AC17b] framework, some of these extensions are automatically provably secure.

• The key-policy and dual-policy versions, by applying [Att19]. The key-
policy version can be found in the full version [VA22b];

• Online/offline extensions, by generalizing [HW14], in Section 7.5.1. Owing
to its generality, these extensions also apply to the following extensions;

• Non-monotone versions, by applying [Amb21, Att19, TKN20]:

– OT-type: the PES can be found in the full version [VA22b];
– OSW-type: the PES can be found in Section 7.5.2.

7.1.6 Efficiency comparison with schemes supporting (1)-(5)
We generalize RW13 to achieve a scheme that supports or can support properties (1)-
(5) whilst being able to achieve a more efficient decryption algorithm. In Table 7.2, we
compare the efficiency of RW13 and its OSW-type non-monotone variant Att19-I-CP
with GLUE (which supports MSPs only) and GLUE-N (which additionally supports
OSW-type negations). In Section 7.6, we give more concrete estimates for the timings
in practice and how they compare to existing schemes.

7.2 Generalizing RW13
We first show how RW13 can be generalized. On a high level, we do this by substi-
tuting the implicit 1-degree polynomial in the RW13 keys and ciphertexts with an
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Table 7.2. Theoretical efficiency comparison of all (selectively secure) compact unbounded
large-universe CP-ABE schemes supporting monotone span programs (that support or can
support OSW(OT)-type negations), by analyzing the key generation, encryption and de-
cryption costs with respect to the number of exponentiations cexp and pairings cpair.

Scheme Key generation Encryption Decryption
cexp cexp cexp cpair

[RW13] 2 + 2|S| 2 + 5|A| 2|Υ| 2 + 2|Υ|
[Att19, §A-I] 6 + 6|S| 2 + 8|A| 2|Υ| 4 + 2|Υ|

GLUE 2 + |S|+
⌈
|S|
nk

⌉
2 + |A|(nk + 2nc + 1) +

⌈
|A|
nc

⌉
2|Υ| 2 +

⌈
|Υ|
nk

⌉
+
⌈
|Υ|
nc

⌉
GLUE-N 6 + 4|S|+ 2

⌈
|S|
nk

⌉
2 + |A|(nk + 2nc + 4) +

⌈
|A|
nc

⌉
2|Υ| 4 +

⌈
|Υ|
nk

⌉
+
⌈
|Υ|
nc

⌉
(a) Costs for non-negated policies

Scheme cexp cpair

[Att19, §A-I] 2|Υ| · |S| 4 + |Υ|+min(|Υ|, |S|)
GLUE-N (worst case) 2|Υ| · |S|+

⌈
|S|
nk

⌉
· |Υ| 4 + |Υ|+

⌈
|S|
nk

⌉
GLUE-N (best case) 2

⌈
|Υ|
nc

⌉
· |S|+

⌈
|S|
nk

⌉
· |Υ| 4 +

⌈
|Υ|
nc

⌉
+
⌈
|S|
nk

⌉
(b) Decryption costs for negated policies

Note: S = attribute set; A = access policy; Υ = matching attributes;
nk, nc = parameters chosen during the setup

n-degree polynomial. Like W11b, the randomness provided by this n-degree poly-
nomial will be shared between the keys and ciphertexts. That is, suppose that nk

and nc are positive integers such that n = nk + nc − 1, then the n-degree polynomial
provides enough randomness for nk − 1 attributes in the keys, and nc attributes in
the ciphertext. To optimally use this randomness, we therefore split the keys and
ciphertexts into partitions of at most nk and nc attributes, respectively. For instance,
if S denotes the set of attributes for which a key is requested, then S is split into
partitions of maximum size nk, i.e., S = S1 ∪ ... ∪ Sm such that |Sl| ≤ nk for each
l ∈ [m]. Then, to avoid boundedness, we apply the RW13 trick by introducing one
“randomizer” for each partition (both in the keys and ciphertexts).

7.2.1 The RW13 scheme
The secret keys and ciphertexts of RW13 (Construction 4.2) are of the form

SK = (K = hα−rb,K ′ = hr, {K1,att = hrb′+ratt(xattb1+b0),K2,att = hratt}att∈S),
CT = (C = M · e(g, h)αs, C ′ = gs, {C1,j = Bλj · (B′)sj ,

C2,j = (B
xattj

1 B0)
sj , C3,j = gsj}j∈[n1]),

where B = gb, B1 = gb1 , B0 = gb0 and B′ = gb
′
denote public keys, and xattj = xρ(j).
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7.2.2 First attempt: a naive approach
Our first attempt is to directly replace the 1-degree polynomial, xattb1 + b0, by an
n-degree polynomial, i.e., fn(xatt) =

∑n
i=0 bix

i
att (where n = nk + nc − 1):

SK = (K = hα−rb,K ′ = hr, {K1,att = h
rb′+ rattfn(xatt)

,K2,att = hratt}att∈S),
CT = (C = M · e(g, g)αs, C ′ = gs, {C1,j = Bλj · (B′)sj ,

C2,j = Fn(xattj )
sj =

(∏n
i=0 B

xi
attj

i

)sj

, C3,j = gsj}j∈[n1]),

where Bi = gbi for all i ∈ [0, n]. We split S into partitions of maximum size nk, and
the rows of A in partitions of size nc. We ensure that the same randomizer is used
for all attributes in the same partition, i.e., set ratt = ratt′ and sj = sj′ , if att and
att′, and attj and attj′ are in the same partitions, respectively.

Unfortunately, the resulting scheme is insecure (see the full version [VA22b] for a
concrete attack). Roughly, the reason is that C1,j = gλjb+sjb

′
does not sufficiently hide

λjb, because the same sj is used for all attributes in the same partition. Therefore,
we need to introduce more randomness.

7.2.3 Second (successful) attempt
We show how to use another polynomial to introduce enough randomness. Because
we only need enough randomness for the ciphertext partitions, we require an (nc−1)-
degree polynomial. This polynomial, f ′

nc−1(xatt) =
∑nc−1

i=0 b′ix
i
att, will replace the

“0-degree polynomial” b′. Because sj provides randomness for one attribute, and
f ′
nc−1 provides randomness for nc − 1 attributes in the partition, this sufficiently

hides λj . The resulting scheme is then

SK = (K = hα−rb,K ′ = hr, {K1,att = h
rf ′

nc−1(xatt) + rattfn(xatt)
,

K2,att = hratt}att∈S),

CT = (C = M · e(g, h)αs, C ′ = gs, {C1,j = Bλj · F ′
nc−1(xattj )

sj ,

C2,j = Fn(xattj )
sj , C3,j = gsj}j∈[n1]),

where F ′
nc−1(xatt) =

∏nc−1
i=0 (B′

i)
xi
att = gf

′
nc−1(xatt), and B′

i = gb
′
i for all i ∈ [nc − 1].

Note that this scheme generalizes RW13, because setting nc = nk = 1 yields RW13.

7.2.4 More efficient decryption
Generalizing the polynomial allows for an improved decryption efficiency. To under-
stand why this yields a significant improvement, we briefly review the W11b scheme.
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We consider the keys and ciphertexts, which are of the form:

SK = (K = hα−rb,K ′ = hr, {Katt = hrfn(xatt)}att∈S),

CT = (C = M · e(g, h)αs, C ′ = gs, {Cj = BλjFn(xρ(j))
s}j∈[n1]),

where r, s ∈ Zp are randomly chosen integers, B = gb is a public key, α is the master
key. To decrypt, one computes

(C/e(C ′,K)) ·

∏
j∈Υ

e(Cj ,K
′)εj/

∏
j∈Υ

e(C ′,Kρ(j))
εj

 ,

where εj for j ∈ Υ ⊆ [n1] are integers that allow us to reconstruct the secret s.
Each such product of pairings can be computed more efficiently by using the bilin-
earity property on the shared arguments, e.g.,

∏
j e(K

′, Cj)
εj can be computed more

efficiently by first multiplying Cj and then taking a pairing:

C/e

C ′,K ·
∏
j∈Υ

K
εj
ρ(j)

 · e
∏

j∈Υ

C
εj
j ,K ′

 .

This requires only two pairing operations instead of 2|Υ|+1. Roughly, the number of
pairing operations grows in the number of randomizers in the keys, and in the cipher-
texts. By replacing the 1-degree polynomial in RW13 by an n-degree polynomial, the
numbers of randomizers in the keys and ciphertexts are reduced by a factor nk and
nc, respectively. Thus, the number of pairing operations is reduced similarly.

Note that this also illustrates why it is important that the BB hash is used for
both the keys and the ciphertexts. For example, in the GPSW06 large-universe scheme
[GPSW06a, §5], the randomness provided by the hash is used only for the ciphertexts.
As a result, the keys require a fresh randomizer for each attribute, and therefore,
decryption costs at least one pairing operation per attribute.

7.3 Our construction
We now present the complete description of our scheme in the selective security setting
(see the full version [VA22b] for a fully secure version). In this scheme, we also
introduce the maps ι and τ , which map the attributes of the keys and ciphertexts,
respectively, into arbitrary partitions of maximum sizes nk and nc.

Construction 7.1: GLUE

GLUE is defined as follows.
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- Setup(λ): On input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and
chooses a pairing e : G×H→ GT . It also defines the universe of attributes
U = Zp, chooses nk ∈ N and nc ∈ N as the maximum partition sizes of
the keys and ciphertexts, respectively, and sets n = nk + nc − 1. It then
generates random α, b, bi, b

′
i′ ∈R Zp for all i ∈ [0, n], i′ ∈ [0, nc − 1]. It

outputs MSK = (α, b, {bi, b′i′}i∈[0,n],i′∈[0,nc−1]) as its master secret key and
publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, {Bi = gbi , B′
i′ = gb

′
i′}

i∈[n],i′∈[nc−1]
).

- KeyGen(MSK,S): On input set of attributes S, the key generation com-
putes m =

⌈
|S|
nk

⌉
, defines ι : S → [m] such that |ι−1(l)| ≤ nk for each

l ∈ [m], generates random integers r, r1, ..., rm ∈R Zp, and outputs the
secret key as

SKS = (K = hα−rb,K ′ = hr, ι,

{K1,att = hrι(att)(
∑n

i=0 bix
i
att)+r(

∑nc−1
i=0 b′ix

i
att)}att∈S , {K2,l = hrl}l∈[m]).

- Encrypt(MPK,A,M): A message M ∈ GT is encrypted under pol-
icy A = (A, ρ) with A ∈ Zn1×n2

p and ρ : [n1] → U by computing

m′ = max
(⌈

n1

nc

⌉
,maxj∈[n1] |ρ−1(ρ(j))|

)
and defining τ : [n1] → [m′] such

that |τ−1(l′)| ≤ nc for each l′ ∈ [m′] and if j, j′ ∈ [n1] with j ̸= j′

such that ρ(j) = ρ(j′), then τ(j) ̸= τ(j′), i.e., multiple occurrences of
the same attribute are mapped to different partitions. (Note that this
works because m′ is defined to be at least as large as the maximum num-
ber of occurrences of each attribute.) It then generates random integers
s, s1, ..., sm′ , v2, ..., vn2 ∈R Zp and outputs the ciphertext as

CTA = (C = M ·As, C ′ = gs, τ, {C1,j = Bλj ·
nc−1∏
i=0

(B′
i)

sτ(j)ρ(j)
i

,

C2,j =

n∏
i=0

B
sτ(j)x

i
ρ(j)

i }j∈[n1], {C3,l′ = gsl′}l′∈[m′]),

such that λj denotes the j-th entry of A · (s, v2, ..., vn2
)⊺.

- Decrypt(SKS ,CTA): Suppose that S satisfies A, and let Υ = {j ∈ [n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0)
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(Definition 2.5). Then, the plaintext M is retrieved by computing

C/
(
e(C ′,K) ·

∏
j∈Υ

(
e(C1,j ,K

′)/e(C3,τ(j),K1,ρ(j)) · e(C2,j ,K2,ι(ρ(j)))
)εj )

.

This can be computed more efficiently as

C/
(
e(C ′,K) · e(

∏
j∈Υ C

εj
1,j ,K

′) ·
(∏

l′∈[m′] e(C3,l′ ,
∏

j∈Υ∩τ−1(l′) K
−εj
1,ρ(j))

·
∏

l∈[m] e(
∏

j∈Υ∩ρ−1(ι−1(l)) C
−εj
2,j ,K2,l)

))
,

which costs, on average, 2 +
⌈
|Υ|
nk

⌉
+
⌈
|Υ|
nc

⌉
pairing operations.

The scheme is correct, i.e., we have C/e(C ′,K) = M ·e(g, h)αs·e(g, h)−αs+rsb =
M · e(g, h)rsb and∏

j∈Υ

(
e(C1,j ,K

′)/e(C3,τ(j),K1,ρ(j)) · e(C2,j ,K2,ι(j))
)εj

=
∏
j∈Υ

(e(g, h)rλjb+rsτ(j)

∑nc−1
i=0 b′ix

i
ρ(j)

·e(g, h)−rι(ρ(j))sτ(j)(
∑n

i=0 bix
i
ρ(j))−rsτ(j)

∑nc−1
i=0 b′ix

i
ρ(j)

·e(g, h)rι(ρ(j))sτ(j)

∑n
i=0 bix

i
ρ(j))εj

=
∏
j∈Υ

e(g, h)rεjλjb = e(g, h)rb
∑

j∈Υ εjλj = e(g, h)rsb,

which yields the plaintext, i.e., M · e(g, h)rsb/e(g, h)rsb = M .

Unique representation of attributes. In the scheme, we assume that any attribute
string att ∈ {0, 1}∗ can be uniquely represented in Zp. In practice, this can be done
by using a collision-resistant hash function H : {0, 1}∗ → Zp [SW05].

7.3.1 The associated pair encoding scheme
To prove security, we define the pair encoding scheme associated with our scheme
in Construction 7.1, for which we use the variables nc, nk, n,S,ι,ρ,τ , n1, n2, λi,m,m′

from Construction 7.1, as follows.

Construction 7.2: PES for GLUE

- Param(∅): Let b = (b, b0, ..., bn, b
′
0, ..., b

′
nc−1), where n = nc + nk − 1.



7.4. The security proof 171

- EncKey(S): Let r = (r, {rl}l∈[m]), and k = (k′, {k1,att}att∈S), where k′ =

α− rb and k1,att = rι(att)(
∑n

i=0 bix
i
att) + r(

∑nc−1
i=0 b′ix

i
att).

- EncCt((A, ρ)): Let s = (s, {sl′}l′∈[m′]) and ŝ = (v̂2, ..., v̂n2
), and c =

({c1,j , c2,j}j∈[n1]), where c1,j = Aj(sb, ŝ)
⊺ + sτ(j)

∑nc−1
i=0 b′ix

i
ρ(j) and c2,j =

sτ(j)
∑n

i=0 bix
i
ρ(j).

In Section 7.4, we prove security of the PES. It follows from Theorem 4.1 that
instantiating the PES with Construction 4.10 is selectively secure.

Theorem 7.1

The PES for GLUE in Construction 7.2 satisfies Sym-Prop (Definition 4.2).

Corollary 7.1

Because Construction 7.2 satisfies Sym-Prop, Construction 7.1 is selectively se-
cure (Theorem 4.1).

7.4 The security proof
While the construction of the scheme already provides some idea on why it may
be secure, the proof requires some additional insights. First, we briefly review some
important aspects in the Rouselakis-Waters proof, to gain some deeper understanding
of the structure of the selective property proof. Then, we show how existing techniques
can be combined to generalize the selective proof.

On a high level, the selective proof consists of the splitting of the n-degree poly-
nomial, which provides randomness for the keys and ciphertexts, into a product of
three polynomials f1, f ′

nc−1 and gnk−1. We use gnk−1 for the keys, and f1f
′
nc−1 for

the challenge ciphertext. For the key polynomial gnk−1, we use Agrawal and Chase’s
[AC17c] techniques. In their selective proof of the CP-ABE scheme with short ci-
phertexts, they embed a polynomial in the public keys such that this polynomial can
be reprogrammed to some polynomial associated with the set of attributes of the
key. We call such polynomials “reprogrammable”. For the ciphertext polynomials
f1, f

′
nc−1, we use a combination of the proofs of RW13 and W11b. Roughly, in these

proofs, they embed polynomials in the public keys, such that these polynomials are
associated with the attributes that occur in the challenge access policy. We call such
polynomials “programmed”. These techniques ensure that the polynomials evaluate to
the right values when the set and policy attributes are evaluated. Figure 7.2 depicts
the relationship between the existing proofs and ours. A similar approach can be
taken in the co-selective proof, by swapping the roles of the two polynomials.
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Rouselakis-Waters:
f1(xatt) = b1xatt + b0

f ′
0(xatt) = b′

Our generalization:
fn(xatt) = f1(xatt)f

′
nc−1(xatt)gnk−1(xatt)

f
1
7→

f
n

f
′0
7→

f
′n
c −

1

W11b-LU:
f ′
nc−1(xatt)

“programmed” polynomial

AC17-CPSC:
gnk−1(xatt)

“reprogrammable” polynomial

Figure 7.2. A high-level overview of the polynomials used in the combined proofs and our
generalized selective proof.

7.4.1 Generalizing the Rouselakis-Waters proof
We generalize the Rouselakis-Waters proof (see the proof of Lemma 4.4) by layering
the policy embedded in the public keys in a partition-wise fashion instead of attribute-
wise. In this way, the ciphertext-specific variable sl′ , which is used for all attributes
in the same partition, can select all attributes associated within the l′-th partition.
As such, in the computation of c1,j and c2,j , we need sτ(j)f

′
nc−1(xρ(j)) to cancel out

Aj(sb, ŝ)
⊺ and sτ(j)fn(xρ(j)) needs to go to 0. To this end, we need to substitute f ′

nc−1

in such a way that it outputs exactly −
∑

k∈[n2]
Aj,k1

d2

(1,k) when sτ(j)f
′
nc−1(xρ(j)) is

computed. Similarly, the key-specific variable rl needs to be constructed such that
k1,att goes to 0, which happens when rι(att)fn(xatt) cancels out rf ′

nc−1(xatt).
To accomplish this, we define fn and f ′

nc−1 as mentioned before, i.e., fn(xatt) =
f1(xatt)f

′
nc−1(xatt)gnk−1(xatt). Roughly, we substitute f1 in the same way as in the

Rouselakis-Waters proof, while we use the polynomials f ′
nc−1 and gnk−1 to ensure that

c1,j and c2,j , and k1,att evaluate to 0, respectively. Because we are given the challenge
access structure a priori, i.e., as input to EncB, we can program these as required in
the substitutions of the polynomials f1 and f ′

nc−1 in the public keys. Concretely, we
substitute b0, ..., bn such that

fn(xatt) :
∑

j∈[n1],k∈[n2]

Aj,kFn,j,k(xatt)

=
∑

j∈[n1],k∈[n2]

Aj,k F1,j(xatt)F
′
nc−1,j(xatt)Ĝnk−1,j,k(xatt)︸ ︷︷ ︸

Fn,j,k(xatt)

,
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where F1,j(xatt) = (xatt − xρ(j)) and

F ′
nc−1,j(xatt) =

nc−1∑
i=0

d′i,jx
i
att =

∏
j′∈χj\{j}

xatt − xρ(j′)

xρ(j) − xρ(j′)
,

with χj = {j′ ∈ [n1] | τ(j′) = τ(j)}. We refer to F1,j and F ′
nc−1,j as the “programmed”

polynomials. These ensure that Fn,j(xρ(j′)) = 0 for all j′ ∈ χj , F ′
nc−1,j(xρ(j)) = 1

and F ′
nc−1,j′(xρ(j)) = 0 for all j′ ∈ χj \ {j}. Then, c1,j and c2,j evaluate to 0, if we

substitute

f ′
nc−1(xatt) :

∑
j∈[n1],k∈[n2]

Aj,kF
′
nc−1,j(xatt)1

d1×d2

(1,τ(j)),(1,k).

In contrast, the set of attributes associated with a key is given after the public
keys have been established, i.e., as input to EncR, so we need to somehow achieve
that we can program the polynomial Ĝnk−1,j,k after the public keys are generated.
We do this by setting

Ĝnk−1,j,k(xatt) =

nk−1∑
i=0

1d1×d2

(1,τ(j)),(2,i,j,k)x
i
att,

such that Ĝnk−1,j,k constitutes a “reprogrammable” polynomial. It can be repro-
grammed by ensuring that rl consists of the coefficients ui,j,l of some target polyno-
mial(s), i.e., by multiplying(∑nk−1

i=0 1d1×d2

(1,τ(j)),(2,i,j,k)x
i
att

)(∑nk−1
i=0 ui,j,l1

d2

(2,i,j,k)

)
=
∑nk−1

i=0 ui,j,l1
d1

(1,τ(j))x
i
att.

We use this to “reprogram” the polynomial Ĝnk−1,j,k(xatt) for all j ∈ Υ, which
is well-defined, because ρ(j) /∈ S. This then yields F ′

nc−1,j(xatt) and cancels out
the F ′

nc−1,j(xatt) in the rf ′
nc−1(xatt) part in k1,att for all j ∈ Υ. Note that, like in

Rouselakis-Waters, we have Ajw
⊺ = 0 for all j ∈ Υ, so those layers automatically go

to 0 in the computation of k1,att. Hence, for each partition Ψl = {att ∈ S | ι(att) = l}
with l ∈ [m], we define the polynomial

Gnk−1,j,l(xatt) =
∑nk−1

i=0 ui,j,lx
i
att =

∑
att′∈Ψl

1
F1,j(xatt′ )

∏
att′′∈Ψl\{att′}

xatt−xatt′′
xatt′−xatt′′

,

for each j ∈ Υ, such that Gnk−1,j,l(xatt) =
1

F1,j(xatt)
for all att ∈ Ψl.
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Putting it all together, we substitute b0,...,bn with coefficients such that the poly-
nomial fn is substituted by

∑
j∈[n1],k∈[n2]

Aj,kFn,j,k(xatt) =
∑

j∈[n1],k∈[n2]

Aj,k

n∑
i=0

di,j,kx
i
att,

where di,j,k =
∑

i′∈[nk−1],i′′∈[nc−1]:i′+i′′=i
d′i′,j1

d1×d2

(1,τ(j)),(2,i′′,j,k).

7.4.2 The selective symbolic property
We prove the selective symbolic property, using m,m′, τ, ι as in Section 7.3 and
Fn,j,k, di,j,k, F

′
nc−1,j , d

′
i,j , Gnk−1,j,l, ui,j,l and χj as in Section 7.4.1. Let d1 = n2 + 1

and d2 = ((nk + 1)n1 + 1)n2. For simplicity of notation, we write indices in [d2] as
a tuple (1, k) or (2, i, j, k) (with i ∈ [nk], j ∈ [n1], k ∈ [n2]) such that it represents a
unique integer in [d2]. For the indices in [d1], we start counting at 0. The substitutions
are, for all i ∈ [n], i′ ∈ [nk], l ∈ [m], l′ ∈ [m′], k ∈ [2, n2]:

b : 1d1×d2

0,(0,1), bi :
∑

j∈[n1],k∈[n2]

Aj,kdi,j,k, b′i′ :
∑

j∈[n1],k∈[n2]

Aj,kd
′
i′,j1

d1×d2

(1,τ(j)),(0,k),

s : 1d1
0 , sl′ : −1d1

(1,l′), α : 1d1
0 , v̂k : 1

d2

(0,k), r :
∑

k′∈[n2]

wk′1
d2

(0,k′)

rl : −
∑

i′∈[nk−1],j′∈Υ,k′∈[n2]

wk′ui′,j′,l1
d2

(1,i′,j′,k′).

Then, c1,j , c2,j , k′ and k1,att indeed go to 0 (see the full version [VA22b]).

7.4.3 Co-selective symbolic property
We prove that the co-selective symbolic property also holds. For this proof, the roles
of the reprogrammable and the programmed polynomial are reversed, because we are
allowed to use an attribute set S in the programming of the public keys and secret
keys, and the policy A only for the ciphertext. Similarly as in the selective case, we
use the co-selective proof of RW13 (see the proof of Lemma 4.4) as inspiration. In
this proof, we substitute the polynomials with:

fn(xatt) :
∑
l∈[m]

F̂nc−1,1,l(xatt)Gnk,l(xatt)︸ ︷︷ ︸
Gn,l(xatt)

−F̂nc−1,2,l(xatt)

 ,

f ′
nc−1(xatt) : F̂nc−1,2,0(xatt),
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where we define Gn,l(xatt) =
∑n

i=0 ũi,lx
i
att, and

Gnk,l(xatt) =

nk∑
i=0

ui,lx
i
att =

∏
att′∈Ψl

(xatt − xatt′)

is a programmed polynomial with Gnk,l(xatt) = 0 for att ∈ Ψl, and

F̂nc−1,1,l(xatt) =

nc−1∑
i=0

1d1×d2

(1,i,l),lx
i
att and F̂nc−1,2,l(xatt) =

nc−1∑
i=0

1d1×d2

(2,i),l x
i
att

are the reprogrammable polynomials, to be reprogrammed to

Fnc−1,1,j,l(xatt) =

nc−1∑
i=0

d̃i,j,lx
i
att =

1

Gnk,l(xρ(j))
F ′
nc−1,j(xatt)

and F ′
nc−1,j(xatt) =

nc−1∑
i=0

d′i,jx
i
att,

respectively, for j ∈ Υ. Note that Fnc−1,1,j,l(xρ(j)) = 1
Gnk,l(xρ(j))

if j ∈ Υ and
Fnc−1,1,j′,l(xρ(j)) = 0 for j′ ∈ χj . Concretely, we have

ũi,l =
∑

i′∈[nc−1],i′′∈[nk]:i′+i′′=i

ui′′,l1
d1×d2

(1,i′,l),l.

Then, for i ∈ [nc − 1], i′ ∈ [nc, n], l ∈ [m], l′ ∈ [m′], k ∈ [n2] we make the following
substitutions:

b : 1d1×d2
0,0 , bi :

∑
l∈[m]

(
ũi,l − 1d1×d2

(2,i),l

)
, bi′ :

∑
l∈[m]

ũi,l

b′i : 1d1×d2

(2,i),0 , α : 1d1
0 , v̂k : wk1

d2

0 , r : 1
d2

0 , rl : 1
d2

l

s : 1d1
0 , sl′ : −

∑
i∈[nc−1],j∈χ̂l′∩Υ,k∈[n2]

Aj,kwk

(
d′i,j1

d1

(2,i) + d̃i,j

)
,

where d̃i,j =
∑

l∈[m] d̃i,j,l1
d1

(1,i,l), d1 = nc(m+1)+1 and d2 = m+1. For simplicity, we
use tuple notations (1, i, l) and (2, i) for the indices in [2, d1], and index 0 maps to the
first row. Then, c1,j , c2,j , k′ and k1,att indeed go to 0 (see the full version [VA22b]).

7.5 Extensions
We present an online/offline (Definition 3.13) and a non-monotone extension of GLUE.
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7.5.1 Online/offline version of GLUE
In the online/offline version (Definition 3.13) of GLUE, the intermediate keys and
ciphertexts are instantiated with random values rather than actual attributes. These
random values are also included in the intermediate keys and ciphertexts, so that
during online time, the difference between the random value and the used attribute
can be computed. This difference is then included in the key or ciphertext, so that a
regular key or ciphertext can be generated from the online/offline key or ciphertext.

Construction 7.3: GLUE-OO

- Setup(λ): This algorithm is the same as in Construction 7.1.

- Regular.KeyGen(MSK,S): This algorithm is the same as in Construc-
tion 7.1.

- Offline.KeyGen(MSK): The algorithm generates two types of “intermediate
secret keys”.

– First type: The algorithm generates random integer r ∈ Zp and stores
ISK1 = (K = hα−rb,K ′ = hr, r).

– Second type: The algorithm generates random integers r′, zj ∈R Zp for
all j ∈ [nk], and stores ISK2 = ({K̂1,j = hzj , zj}j∈[nk],K2 = hr′ , r′).

- Online.KeyGen(MSK, ISK,S): On input set of attributes S, the algorithm
computes m =

⌈
|S|
n

⌉
, defines ι : S → [m] such that |ι−1(l)| ≤ n for each

l ∈ [m], and further defines ι̂ : S → [nk] such that it is injective on each
subdomain ι−l(l) for all l ∈ [m]. It takes one intermediate secret key of
the first type, and m of the second type:

(K = hα−rb,K ′ = hr, r), ({K̂1,j,l = gzj,l , zj,l}j∈[nk],K2,l = hrl , rl)l∈[m],

sets K̂1,att = K̂1,ι̂(att),ι(att), then computes

K̂3,att =

(
rι(att)

n∑
i=0

bix
i
att + r

nc−1∑
i=0

b′ix
i
att

)
− zι̂(att),ι(att).

and outputs the secret key as

SKS = (K,K ′, ι, {K̂1,att, K̂3,att}att∈S , {K2,l}l∈[m]).
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- FinalStep.KeyGen(OO.SKS): The user can generate the secret keys as in
Construction 7.1 from (K,K ′, ι, {K̂1,att,K2,l, K̂3,att}att∈S,l∈[m]), by com-
puting for each att ∈ S the secret key component K1,att as in Construc-
tion 7.1: K1,att = K̂1,att · hK̂3,att .

- Regular.Encrypt(MPK,A,M): This algorithm is the same as in Construc-
tion 7.1.

- Offline.Encrypt(MPK)→ CTA: The algorithm generates two types of “in-
termediate ciphertexts”.

– First type: It selects s ∈R Zp and stores (Ĉ = As, C ′ = gs, s).

– Second type: It selects s′, λ̂1, ..., λ̂nc
∈R Zp, (x̂j,1, ..., x̂j,n) ∈R Zn

p , sets
x̂j,0 = 1 for all j ∈ [nc], and stores

({Ĉ1,j = Bλ̂j ·
∏nc−1

i=0 (B′
i)

s′x̂j,i , Ĉ2,j =
∏n

i=0 B
s′x̂j,i

i , λ̂j , {x̂j,i}i∈[n]
}j∈[nc], C3 = gs

′
, s′).

- Online.Encrypt(MPK, ICT,A,M): On input policy A = (A, ρ), the algo-
rithm selects one “intermediate ciphertext” (Ĉ, C ′, s) of the first type, and
then m′ =

⌈
n1

nc

⌉
“intermediate ciphertexts” of the second type

({Ĉ1,j,l′ , Ĉ2,j,l′ , λ̂j,l′ , {x̂j,i,l′}i∈[0,n]}j∈[nc], C3,l′ , sl′)

(for all l′ ∈ [m′]). It defines τ and λj as in Construction 7.1, and fur-
ther defines τ̂ : [n1] → [nc] such that τ̂ is injective on each subdomain
τ−1(l′) with l′ ∈ [m′], i.e., each attribute gets mapped to a unique tuple
(Ĉ1,j,l′ , ..., sl′). It encrypts message M by setting C = M · Ĉ and sets for
all j ∈ [n1], i ∈ [n]:

Ĉ1,j = Ĉ1,τ̂(j),τ(j), Ĉ2,j = Ĉ2,τ̂(j),τ(j),

Ĉ4,j = λj − λ̂τ̂(j),τ(j), Ĉ5,j,i = sτ̂(j)(x
i
ρ(j) − x̂τ̂(j),i,τ(j)).

The user publishes the ciphertext as

CTA = (C,C ′, τ, {Ĉ1,j , Ĉ2,j , Ĉ4,j , Ĉ5,j,i}i∈[n],j∈[n̂1], {C3,l′}l′∈[m̂′]).

Note that the ciphertext increases by n1(n + 1) elements in Zp compared
to regular ciphertexts.

- Decrypt(MPK, (OO.)SKS , (OO.)CTA): If S satisfies A, determine εj and
Υ as in Construction 7.1, set Υl = {j ∈ Υ | ι(ρ(j)) = l} for all l ∈ [m] and
compute C/ (e(C ′,K) · C1 · C2 · C3), where
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C1 = e

∏
j∈Υ

Ĉ
εj
1,j · (g

b)
∑

j∈Υ εjĈ4,j ·
nc−1∏
i=1

(gbi)
∑

j∈Υ εjĈ5,j,i ,K ′

 ,

C2 =
∏
j∈Υ

e(C
−εj
3,τ(j),K1,ρ(j)), C3 =

∏
l∈[m]

e

∏
j∈Υl

Ĉ
εj
2,j ·

n∏
i=1

(gbi)
∑

j∈Υl
εjĈ5,j,i ,K2,l

 .

Correctness. Correctness of the decryption algorithm follows readily by showing
that Ĉ1,j · (gb)Ĉ4,j ·

∏nc−1
i=1 (gbi)Ĉ5,j,i = C1,j , and Ĉ2,j ·

∏n
i=1(g

bi)Ĉ5,j,i = C2,j , where
C1,j and C2,j are as in Construction 7.1 (see the full version [VA22b]). Then, the
correctness proof is identical to that in this definition.

Security proof. The security proof for the online/offline version of GLUE is similar
to the proof in [HW14], and can be found in the full version [VA22b]. In the proof, we
reduce the security of the online/offline version to the security of the regular scheme.
In this proof, we use the homomorphic properties of the scheme and the randomness
of λ̂i and x̂j,i.

7.5.2 GLUE version supporting OSW-type negations
We provide a provably secure generalized unbounded scheme supporting NMSPs with
OSW-type negations. We obtain this scheme by applying the generic negation in
[Amb21], and the direct sum transformation and ciphertext-policy augmentation (con-
fined to OR) in [Att19] to GLUE (Construction 7.2). Note that this yields a gener-
alized variant of Att19-CP-I [Att19]. The variables nc, nk, n,S,ρ,ι,τ, n1, n2, λi,m,m′

are as in Construction 7.1. In this definition, we also include a function ρ2 that maps
the row to 1 if the attribute is not negated in the policy, and to 2 if it is negated.

For this scheme, we require Lagrange interpolation. That is, given n + 1 points
(x, fn(x)), with x ∈ S and |S| = n + 1, on a polynomial. Then, we can reconstruct
the the point fn(z) by computing

fn(z) =
∑
x∈S

ΛS,xfn(x) (mod p), where ΛS,x,z =
∏

y∈S\{x}

z − y

x− y
(mod p).

Construction 7.4: GLUE-N

GLUE-N, which supports OSW-type negations, is defined as:
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- Param(par): Let

b = (b, b′′, b(3), b0, ..., bn, b̄0, ..., b̄n, b
′
0, ..., b

′
nc−1, b̄

′
0, ..., b̄

′
nc−1),

where n = nc + nk − 1 with nk ≥ nc, and

fn(xatt) =

n∑
i=0

bix
i
att, f

′
nc−1(xatt) =

nc−1∑
i=0

b′ix
i
att,

f̄n(xatt) =

n∑
i=0

b̄ix
i
att, f̄

′
nc−1(xatt) =

nc−1∑
i=0

b̄′ix
i
att.

- EncKey(S): Let r = (r, r′, r̄, {rl, r̄att, r̄′l}att∈S,l∈[m]), and let k = (k′, k′′, k̄′′,
{k1,att, k̄1,att, k̄2,att}att∈S), where k′ = α− r′b,

k′′ = r′b′′ + rb(3), k̄′′ = r′b′′ + r̄b(3), k1,att = rι(att)fn(xatt) + rf ′
nc−1(xatt),

k̄1,att = r̄′ι(att)f̄
′
nc−1(xatt) + r̄ι(att)b̄0, k̄2,att = r̄ι(att)f̄n(xatt),

such that
∑

l∈[m] r̄
′
l = r̄. Note that we require that each partition is full,

i.e., |ι−1(l)| = nk for all l ∈ [m]. If needed, this can be done by using
dummy attributes [OSW07].

- EncCt((A, ρ, ρ2)): Let Φ = {j ∈ [n1] | ρ2(j) = 1} and Φ = [n1] \ Φ.
Let s = (s, {sl′}l′∈[m′], {s′j}j∈[n1]) and ŝ = (v̂2, ..., v̂n2

). We set c =
{c1,j , c2,j , c3,j , c̄2,j′ , c̄3,j′}j∈Φ,j′∈Φ, where c1,j = Aj(sb, ŝ)

⊺ + s′jb
′′, and

– For j ∈ Φ: c2,j = s′jb
(3) + sτ(j)f

′
nc−1(xρ(j)), c3,j = sτ(j)fn(xρ(j)).

– For j ∈ Φ: c̄2,j = s′jb
(3) + sτ(j)f̄

′
nc−1(xρ(j)), c̄3,j = sτ(j)f̄n(xρ(j)). We

require that each partition that has at least one negated attribute in
it is full and only contains negated attributes that occur in a conjunc-
tion, i.e., for all j ∈ [n1] with ρ2(j) = 2, we have |χj | = nc, where
χj = {j′ ∈ [n1] | τ(j′) = τ(j) ∧ ρ2(j

′) = 2}. If needed, this can be
done by using dummy attributes (not issued for keys) [OSW07].

- Pair(S, (A, ρ, ρ2)): For S that satisfies A, we have some Υ = {j ∈ [n1] |
ρ(j) ∈ S} such that {εj ∈ Zp}j∈Υ exists with

∑
j∈Υ εjAj = (1, 0, ..., 0)

(Definition 2.5). We also split Υ into two subsets Υ′ = Υ ∩ Φ and Υ
′
=

Υ \ Υ′. We retrieve αs by first computing for each ciphertext partition
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l′ ∈ [m′] with some row j ∈ Υ
′
with τ(j) = l′ and l ∈ [m]:∑

att∈Ψl

ΛΩj,l,xatt,0sτ(j)k̄2,att +
∑
j′∈χj

ΛΩj,l,ρ(j′),0r̄lc̄3,j′ = r̄lsτ(j)f̄n(0),

where Ψl = {att ∈ S | ι(att) = l}, and Ωj,l = {xatt | att ∈ Ψl} ∪ {ρ(j′) |
j′ ∈ [n1], τ(j) = τ(j′)}. Then, we use it to retrieve for all att ∈ Ψl:

sτ(j)k̄1,att − r̄lsτ(j)f̄n(0) = sτ(j)r̄
′
ι(att)f̄

′
nc−1(xatt),

which we use to recover for each j ∈ Υ
′
and l ∈ [m]:∑

att∈Ψl

ΛΨ′
l,xatt,ρ(j)sτ(j)r̄

′
lf̄

′
nc−1(xatt) = sτ(j)r̄

′
lf̄

′
nc−1(xρ(j)),

where Ψ′
l = {xatt | att ∈ Ψl}. Then, we retrieve∑

l∈[m]

sτ(j)r̄
′
lf̄

′
nc−1(xρ(j)) = sτ(j)r̄f̄

′
nc−1(xρ(j))

for each j ∈ Υ
′
, so in turn we can retrieve

r′c1,j − s′j k̄
′′ + r̄c2,j − sτ(j)r̄f̄

′
nc−1(xρ(j)) = r′Aj(sb, ŝ)

⊺.

Then, for all j ∈ Υ′, we compute

r′c1,j − s′jk
′′ + rc2,j − sτ(j)k1,ρ(j) + rι(ρ(j))c3,j = r′Aj(sb, ŝ)

⊺.

Finally, we retrieve sk′ −
∑

j∈Υ εjr
′Aj(sb, ŝ)

⊺ = αs.

Performance analysis of the selectively secure instantiation. If we assume
that |S| can take on any positive value, then it is best to put all non-lone variables in
H and the polynomials in G. If |S| is always going to be small compared to |Υ|, then
it is better to put all ciphertext components in G and the key components in H. The
costs are (in the best case, assuming that the negations can be distributed optimally
over the ciphertext partitions, see the full version [VA22b]):

• KeyGen: 3 + 2m+ |S| exponentiations in H and 3 + 3|S| exponentiations in G;

• Encrypt: |Υ|+m′ + 1 exponentiations in H, n1(nc + n+ 4) exponentiations in
G, and 1 exponentiation in GT ;
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• Decrypt: min
(
am+

⌈
|Υ|
nc

⌉
, a(m+ 2|S|) +

⌈
|Υ′|
nc

⌉)
+
⌈
|Υ′|
nk

⌉
+ 4 pairing opera-

tions, and am
⌈
|Υ′|
nc

⌉
(2nk + nc) exponentiations in G, where a = 1 if |Υ′| > 0,

and a = 0 otherwise.

For encrypt and decrypt, the costs are higher when the attributes associated with the
negations cannot be distributed optimally over the ciphertext partitions. In the worst
case, each negated attribute incurs 2 exponentiations in H and nc + n + 4 in G in
Encrypt. For decryption, suppose that the policy consists of negated attributes only,
and none of them can be placed in the same partition. Then, the decryption costs
are 4 + |Υ|+

⌈
|Υ′|
nk

⌉
pairing operations and 2|Υ| · |S|+

⌈
|Υ′|
nk

⌉
· |Υ| exponentiations.

7.6 Performance analysis
We analyze the efficiency of GLUE (Construction 7.1). An important aspect in this
analysis is the pair of parameters nk and nc, which is chosen during the setup (e.g.,
by a practitioner). On a high level, the key generation, encryption and decryption of
the selectively secure version of GLUE incur the following costs:

• KeyGen: 2 + |S|+
⌈
|S|
nk

⌉
exponentiations in H;

• Encrypt: 1 exponentiation in GT , 1 +
⌈
n1

nc

⌉
exponentiations, n1 MBEs with

nc + 1 bases and n1 MBEs with nk + nc bases in G;

• Decrypt: roughly 2 +
⌈
|Υ|
nk

⌉
+
⌈
|Υ|
nc

⌉
pairing operations.

The efficiency of these algorithms depends on the one hand on the efficiency of these
operations, and on the other hand on the choices of nk and nc. By analyzing these
rough costs from a mathematical point of view, the trade-off between the encryption
and decryption efficiency is optimal when nk = nc (which follows from the arithmetic
mean-harmonic mean inequality). However, when the set of attributes S is large, and
nk is small, it may occur that all matching attributes are in different partitions. As
such, choosing nk to be larger, e.g., nk = 10, ensures that the matching attributes are
in the same key partitions with a large probability, and therefore the actual number
of pairing operations is higher. In general, it holds that, the larger the partition
sizes, the fewer pairing operations are needed during decryption. Unfortunately, the
drawback is that encryption becomes more expensive, meaning that we may want to
use the online/offline version of the scheme in practice. In the full version [VA22b],
we give more details on how a suitable partition size may be chosen. For our analysis,
we consider three parameter settings: (nk, nc) ∈ {(3, 3), (5, 5), (10, 5)}. Furthermore,
for the variant that supports OSW-type negations, we consider |S| ∈ {1, 5}.
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On the comparability of the schemes. For a fair comparision, we optimize all
the schemes in the same way when instantiating the schemes in the asymmetric set-
ting (Chapter 6). Specifically, we optimize the decryption and encryption efficiency.
For the analysis of [RW13], [HW14], Att19-I-CP and Att19-I-CP-OO [Att19, §A-
I] schemes, we have used the performance analysis of our associated schemes for
nk = nc = 1 (which have the same encodings). We also compare our monotone
schemes with [AHM+16] and [ABGW17] (see the full version [VA22b] for our instan-
tiations of the schemes). In particular, we have first instantiated the schemes with
our generic compiler (Definition 4.10), so they yield the most comparable results. To
place the costs based on our theoretical analyses in the fully-secure setting, we multi-
ply the costs for each element and operation in G and H by a factor 2. This overhead
corresponds to the most efficient instantiation of the schemes in the AC17 frame-
work (Section 4.4). For all schemes, we also assume that the input access policies are
Boolean formulas, so that for decryption, it is ensured that εj ∈ {0, 1} [LW11a].

Estimates based on benchmarks in RELIC. We estimate the computational
costs of the schemes by obtaining benchmarks of various algorithms and extrapolating
the results by analyzing the descriptions of the schemes. We analyze the efficiency in
this way for two reasons. First, it allows us to analyze the efficiency of many scheme
configurations without having to implement each one, which is a cumbersome and
error-prone effort. Second, it allows us to compare the schemes more accurately and
more fairly, because we can make estimates1 based on the ABE Squared approach
(Chapter 6) instead of using the Charm framework [AGM+13]. For the performance
analysis in this chapter, we have run benchmarks in RELIC [AGM+] on a 1.6 GHz
Intel i5-8250U processor for the BLS12-446 curve [BLS02], which can be found in the
full version [VA22b].

Comparison. Tables 7.3a and 7.3b show the performances of all unbounded schemes
using a BB hash that support MSPs and NMSPs2. The tables illustrate that the de-
cryption algorithms of our regular schemes are significantly faster than the established
schemes. While the encryption costs increase compared to the other schemes, our on-
line/offline versions also provide a solution in this regard, incurring minimal online
costs. This comes with a slight trade-off in the ciphertext size and the decryption
efficiency compared to the regular version, but overall, our online/offline schemes
outperform the established schemes in all algorithms. Importantly, the decryption
of our schemes supporting negations with parameters nk = nc = 5 outperforms the
only other unbounded OSW-type non-monotone scheme. Importantly, decryption is
faster by a factor 4 for non-negated attributes, and faster by a factor 4-5 for negated

1Although approximated theoretically, we expect our estimates to be close to the costs of actual
implementations, see the full version of GLUE [VA22b].

2The code used to generate these benchmarks is available as a Jupyter notebook at https:
//github.com/mtcvenema/glue.

https://github.com/mtcvenema/glue
https://github.com/mtcvenema/glue
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Table 7.3. Rough estimates of the storage costs of the secret keys and the ciphertexts in
kilobytes (KB), where 1 KB = 1024 bytes, and the (online) computational costs incurred
by the key generation, encryption and decryption algorithms of GLUE(nk,nc) (and its on-
line/offline (suffixed with “OO”) and OSW-non-monotone (suffixed with “N”) variants) and
the other unbounded CP-ABE schemes, expressed in milliseconds (ms), for 10 and 100 at-
tributes. Note that the offline key generation and encryption costs of each online/offline
scheme are equal to the key generation and encryption costs of its regular version.

Storage costs Computational costs
SK CT KeyGen Encrypt Decrypt

Scheme |MPK| 10 100 10 100 10 100 10 100 10 100

R
eg

ul
ar

[RW13] 1.42 4.86 44.58 4.05 33.58 26.0 238.7 32.9 305.9 46.2 375.2
[AHM+16] (nk = 2) 1.75 5.3 45.02 6.45 55.67 16.5 122.9 40.8 368.3 43.7 317.4

[ABGW17] 1.42 2.65 22.51 3.94 33.47 14.2 120.5 32.3 305.2 27.9 192.4
GLUE(3,3) 2.08 3.53 30.02 3.39 26.36 18.9 160.7 59.8 571.4 24.3 133.9
GLUE(5,5) 2.74 3.09 26.93 3.17 24.83 16.5 144.2 82.3 800.4 17.0 82.8
GLUE(10,5) 3.28 2.87 24.72 3.17 24.83 15.4 132.3 102.1 998.4 15.1 64.5

O
/O

[HW14] 1.42 5.23 48.29 4.79 41.0 0 0 0 0 51.5 416.2
GLUE(3,3) 2.08 3.9 33.73 5.62 48.62 0 0 0 0 33.6 202.6
GLUE(5,5) 2.74 3.46 30.64 6.88 61.94 0 0 0 0 27.6 157.5
GLUE(10,5) 3.28 3.24 28.43 8.74 80.49 0 0 0 0 24.2 123.4

(a) Schemes supporting MSPs only.

Storage costs Computational costs
SK CT KeyGen Encrypt Decrypt

Scheme |MPK| 10 100 10 100 10 100 10 100 10 100 10 100 10 100

R
eg

ul
ar Att19-I-CP 1.4 11 100 6 56 59 542 67 638 52 380 55 368 216 1779

GLUE-N(3,3) 2.1 7.6 64 5 41 45 386 90 865 30 139 62 375 110 746
GLUE-N(5,5) 2.7 6.5 56 4.6 38 40 353 111 1086 22 88 55 368 55 383
GLUE-N(10,5) 3.3 5.9 50 4.6 38 38 329 131 1284 21 70 79 599 78 614

O
/O

Att19-I-CP-OO 1.4 12 111 7.1 63 0 0 0 0 61 461 65 449 226 1860
GLUE-N(3,3) 2.1 8.7 75 7.3 63 0 0 0 0 47 275 79 511 126 881
GLUE-N(5,5) 2.7 7.6 67 8.3 75 0 0 0 0 42 236 75 516 75 530
GLUE-N(10,5) 3.3 7.1 62 10 94 0 0 0 0 37 186 95 715 95 730

(b) Schemes supporting OSW-type negations. The decryption costs are for non-negated, and negated
policies with |S| ∈ {1, 5}, respectively.

attributes and |S| = 5, bringing down the costs from almost two seconds to 382 ms.
As a result, our schemes could provide a more attractive building block for OSWOT-
type non-monotone schemes, as they support more efficient decryption algorithms for
negated and non-negated attributes, and for small and large sets of attributes for each
label. Furthermore, owing to the online/offline extensions, the key generation and en-
cryption algorithms do not need to suffer from heavy online computations. Instead,
encrypting users need to store only 3.17-10.17 kilobytes per one intermediate cipher-
text of the first type and sufficient of the second type for ten attributes (depending on
the instantiation). This means that, with just a megabyte of space, a user can store
at least 100 intermediate ciphertexts for a total of 1000 attributes. For computing
devices such as computers and smartphones, which have an abundance of storage
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space nowadays, this is a more than acceptable trade-off. Similarly, key generation
authorities can store intermediate keys for at least 286 users and 2860 attributes with
just a megabyte of space. Thus, with gigabytes, an authority can precompute keys
for hundreds of thousands of users and millions of attributes.

7.7 Applying multiple instantiations of GLUE
The flexible efficiency trade-offs that GLUE provides can be exploited in practice.
In particular, practitioners can choose one suitable instantiation of GLUE, or choose
multiple instantiations of GLUE to support different computational devices. Interest-
ingly, by using the direct sum with parameter reuse transformation of Attrapadung
[Att19], GLUE would be able to support multiple instances of itself simultaneously,
such that the size of the master public key is upper-bounded in the maximum size
of the public keys of all instances. This may be useful in settings in which the de-
vices have varying computational resources. For instance, in the WLAN use case
considered by ETSI [ETS18a], the decryption devices may be any mobile device in a
network, including more constrained devices such as smartwatches. For those devices,
it is more beneficial to use a scheme with fast decryption, e.g., GLUE(5,5), while for
faster devices, it is sufficient to employ a scheme with slower decryption, e.g., RW13.
In WLAN systems, the access point sends an encrypted e.g., WPA2-PSK key to the
connecting device, which can decrypt it if is satisfies the policy. Because this ex-
change is interactive, the connecting device and access point could first negotiate on
the particular instance of GLUE for which the connecting device has a secret key be-
fore encrypting the WPA2-PSK key. In non-interactive systems, e.g., cloud settings
[ETS18a], it may be more desirable to use multiple instances in parallel. Powerful
devices could, for instance, use multiple instances to support less powerful devices
that only use the more efficient instances. For example, powerful decryption devices
could have keys for both GLUE(5,5) and RW13, while less powerful encryption devices
use RW13 or an online/offline variant of GLUE to encrypt.

7.8 Future work
For future work, it would be valuable to improve the security, efficiency and expressiv-
ity of GLUE. First, we have proven security in the AC17 framework, which requires a
q-type assumption. Although frameworks exist that prove security generically under
static assumptions [Att14a, CGW15, Att16], these use the stronger master-key hiding
property (Definition 4.3). Like other ABE using a BB hash, ours does not satisfy this
property (Lemma 4.2). To achieve full security, more intricate proof techniques need
to be devised, such as [CGKW18]. Second, we have analyzed the efficiency of the
schemes on the BLS12-446 curve. Presumably, the encryption and decryption costs
can improve if curves such as KSS16-339 [KSS08] are used, which provide faster arith-
metic in G and provide more efficient products of pairing operations [CDS20]. GLUE
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(and RW13) may also benefit from fixed-base multi-base exponentiations [Möl01],
which RELIC does not support. Finally, while we have given the first steps towards
realizing more efficient schemes supporting OSWOT-type negations, we have not ex-
plicitly specified these schemes, which can be built using GLUE-N.

7.9 Conclusion
We have proposed GLUE, a new unbounded large-universe scheme with flexible ef-
ficiency trade-off. This scheme is a generalization of RW13 and W11b, in that it
supports polynomials of any degree for the Boneh-Boyen hash. To optimally use the
randomness provided by the hash, we use the partitioning approach (previously also
used by AHM+16 [AHM+16]), splitting the sets of attributes and the policies into
partitions of maximum sizes nk and nc, respectively. This allows for a decreased
number of pairing operations required during decryption compared to RW13 (and
related variants). Roughly, the pairing costs decrease by a factor nk = nc (if chosen
to be equal). Along the way, we have also introduced new proof techniques. These
ensure that the randomness provided by the BB hash can be used for both the keys
and ciphertexts in the unbounded setting. Finally, we have shown that our schemes
indeed outperform existing schemes using a BB hash in the decryption, and notably,
all schemes supporting OSW-type negations. Because our non-monotone schemes are
unbounded and faster than 1.2 seconds in all algorithms on a laptop, even for large
policies and sets, they are more suitable for practice than existing non-monotone
schemes.
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Chapter 8

TinyABE: unrestricted CP-ABE for
embedded devices and low-quality networks

CP-ABE has attracted much interest from the practical community to enforce
access control in distributed settings such as the Internet of Things (IoT). In
such settings, encryption devices are often constrained, having small mem-
ories and little computational power, and the associated networks are lossy.
To optimize both the ciphertext sizes and the encryption speed is therefore
paramount. In addition, the master public key needs to be small enough to
fit in the encryption device’s memory. At the same time, the scheme needs
to be expressive enough to support common access control models. Currently,
however, the state of the art incurs undesirable efficiency trade-offs. Existing
schemes often have ciphertexts whose sizes are linear in the policy, and conse-
quently, the ciphertexts may be too large and encryption may be too slow. In
contrast, schemes with small ciphertexts have extremely large master public
keys, and are generally computationally inefficient.

In this chapter, we propose TinyABE: a novel CP-ABE scheme that is ex-
pressive and can be configured to be efficient enough for settings with embed-
ded devices and low-quality networks. In particular, we demonstrate that our
scheme can be configured such that the ciphertexts are small, encryption is fast
and the master public key is small enough to fit in memory. From a theoretical
standpoint, the new scheme and its security proof are non-trivial generaliza-
tions of the expressive scheme with constant-size ciphertexts by Agrawal and
Chase (TCC’16, Eurocrypt’17) and its proof to the unbounded setting. By us-
ing techniques of Rouselakis and Waters (CCS’13), we remove the restrictions
that the Agrawal-Chase scheme imposes on the keys and ciphertexts, making
it thus more flexible. In this way, TinyABE is especially suitable for IoT.
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8.1 Introduction
CP-ABE has proven to be a valuable primitive in enforcing access control on a cryp-
tographic level [BSW07, KL10, SRGS12]. Recently, ETSI has published two specifi-
cations regarding the high-level requirements for ABE [ETS18a], and how ABE can
increase data security and privacy [ETS18b]. In these specifications, ETSI focuses on
several use cases, one of which considers data access control in the Internet of Things
(IoT), in particular. An important requirement that ETSI imposes on ABE is that
an IoT device should be able to encrypt, but not necessarily decrypt. To this end,
the public keys and ciphertexts should be small, and encryption should be efficient.

According to RFC85761, IoT devices and networks are characterized by small
memory, low computational power, and high packet loss rates. Unfortunately, many
ABE schemes—including those considered by ETSI [ETS18a]—have ciphertexts sizes
and encryption costs that grow linearly in the number of attributes [AC17a, ABGW17].
As a result, these schemes are not suitable for IoT applications [ETS20]. First, encryp-
tion may simply consume too much time, requiring almost one second per attribute
[Sco20]. Second, even for small policies, the ciphertexts may be so large that they
have to be fragmented across more than one data packet during transmission. This
results in an increased probability that at least one of the packets is dropped, and
subsequently increases the expected time that it takes for the message to successfully
arrive at the receiver [PST20]. Third, the ciphertext may not fit in memory. The
computation of one ciphertext would therefore need to be split into parts, and the
partial ciphertexts need to be streamed out of the device, like in [HRS16]. This may
further complicate issues with packet loss.

To mitigate difficulties with the size, ABE schemes with sufficiently short cipher-
texts can be deployed. Several schemes with constant-size ciphertexts have been
proposed [EMN+09, HLR10, CZF11, ALdP11, AHY15, AC16]. However, many of
these schemes have restricted policies [EMN+09, HLR10, CZF11], supporting only
AND-gates or threshold functions, and therefore have a limited expressivity. Others
are bounded [ALdP11, AHY15, AC16], supporting only limited sizes for the sets or
policies associated with the ciphertexts. More importantly, the efficiency of these
bounded schemes depends heavily on the bounds. Hence, choosing these bounds to
be sufficiently high for some given practical setting is not a suitable option either.

In this chapter, we mitigate these limitations by proposing a scheme with a trade-
off feature. Upon setup, the system parameters can be chosen such that the desired
efficiency trade-off between the sizes of the keys and the ciphertexts, as well as the
computational costs of the algorithms can be attained. In particular, one can optimize
encryption so that it can be performed on IoT devices. Furthermore, one can configure
the ciphertexts to be small enough for a specific setting, i.e., to fit in memory of IoT
devices or in one Ethernet packet for a priorly specified maximum policy length, e.g.,

1https://tools.ietf.org/html/rfc8576

https://tools.ietf.org/html/rfc8576
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100. One can also configure the master public key to be small enough to fit in memory.
This makes TinyABE especially suitable for IoT.

8.1.1 Our contributions
Our main contribution is TinyABE, a new CP-ABE scheme that simultaneously can
satisfy several desirable properties:

(1) Expressivity: The scheme supports monotone span programs (MSPs), which
includes Boolean formulas consisting of both AND and OR-gates;

(2) Large-universeness: Any string can be used as attribute;

(3) Unboundedness: No bounds are posed on the parameters, including the at-
tribute sets associated with the keys and the policy lengths;

(4) Configurable: The system parameters can be chosen such that the scheme
attains the required efficiency, for example

• Short ciphertexts: The scheme can be configured such that the cipher-
texts are sufficiently small for scenarios involving low-quality networks;

• Efficient encryption: The scheme can be configured such that encryption
is fast, even on resource-constrained devices.

We achieve this by making the expressive CP-ABE scheme with constant-size cipher-
texts by Agrawal and Chase (AC16) [AC16] unbounded. As a result, our scheme
is parametrized, and can be configured to provide the desired efficiency trade-off.
Special cases of our scheme include AC16, and the CP-ABE scheme with constant-
size ciphertexts by Attrapadung (Att19) [Att19]. TinyABE can thus be viewed as
a generalization of AC16 to the unbounded setting. We also provide two secondary
contributions:

• Security proof: We generalize Agrawal and Chase’s [AC17b] proof for AC16 to
the unbounded setting using Rouselakis and Waters’ [RW13] techniques;

• Performance analysis: We analyze the efficiency of our scheme with a focus
on practice. In particular, we obtain the most efficient encryption algorithm
compared to other expressive and unbounded schemes;

8.2 High-level overview and details about TinyABE
Our construction. TinyABE is a generalization of the Agrawal-Chase scheme (AC16)
[AC16, AC17b] to the unbounded setting, using the partitioning techniques by Attra-
padung et al. (AHM+16) [AHM+16], and by using the proof techniques by Rouselakis
and Waters (RW13) [RW13]. By generalizing AC16, we can make it more efficient.
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Although AC16 supports expressive policies and attains constant-size ciphertexts, it
is bounded in parameters N1 and N2, where N1 and N2 denote the upper bounds on
the number of rows and columns of the access structure, respectively. Importantly,
the scheme’s efficiency depends on these parameters. Whereas the ciphertext sizes
are constant, the master public key grows by a factor N1N2, and the secret keys grow
by a factor N2

1N2. We show in our performance analysis that, as a result, the master
public key is already so large for N1 = N2 = 32, i.e., 103 kilobytes (KB), that it
does not fit in memory of many embedded devices. By making AC16 unbounded, the
efficiency depends differently on these factors. We make the AC16 scheme unbounded
by using a similar approach as AHM+16. Roughly, we partition the sets of rows and
columns in smaller subsets of maximum sizes n̂1 and n̂2, respectively, and apply the
AC16 scheme to the partitions. The master public key and secret keys then also
grow in factors n̂1n̂2 and n̂2

1n̂2, respectively, but n̂1 and n̂2 can be much smaller to
attain small ciphertexts. Although our ciphertexts are not constant-size, they shrink
by a factor O(min(n̂1, n̂2)) compared to schemes with linear-size ciphertexts, such as
RW13. Thus, even for small choices of n̂1 and n̂2, our ciphertexts are much smaller
than RW13 ciphertexts. Whereas RW13 ciphertexts might only fit in memory or in
one Ethernet packet for a maximum policy length of 33 or 3, respectively, TinyABE
can support larger policy lengths. For example, in the same settings, it supports maxi-
mum policy lengths of 298 (for n̂1 = n̂2 = 3), and 100 (for n̂1 = n̂2 = 13), respectively,
while the associated master public keys are only 2.3, and 19 KB, respectively.

Security proof. We formulate our scheme and proofs in the AC17 [AC17b] frame-
work (Chapter 4). In part, we use this framework, because we generalize AC16,
and its only proofs in the full-security setting are given in this framework [AC17b,
Att19]. In contrast, other expressive CP-ABE schemes with constant-size ciphertexts
[AHY15, AT20] have larger keys than AC16 and are therefore less efficient. Further-
more, recall that, because we prove security in the AC17 framework, our scheme can
be transformed into a scheme supporting negations in the policies [Att19, Amb21].

Improving the partitioning approach. We improve on the partitioning approach
used for the KP-ABE scheme of Attrapadung et al. (AHM+16) [AHM+16], which is
unbounded, supports expressive policies, and can be configured to have small cipher-
texts. Specifically, AHM+16 generalizes the first expressive KP-ABE scheme with
constant-size ciphertexts of Attrapadung et al. (ALP11) [ALdP11] to the unbounded
setting. Concretely, their approach consists of the partitioning of the attribute set (to
be used during encryption) into subsets of maximum size nk, where nk is the bound
on the attribute set inherited from ALP11. Before our work, a CP-ABE scheme at-
taining similar characteristics remained an open problem. In fact, the first expressive
CP-ABE schemes with constant-size ciphertexts [AHY15, AC16] were proposed four
years after the introduction of ALP11. Presumably, the reason for this delay is the
difficulty in simultaneously achieving these properties in the ciphertext-policy setting.
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On the one hand, the entire access policy—which is two-dimensional—needs to be em-
bedded in one ciphertext component. On the other hand, the decrypting user—who
has an attribute set satisfying the policy—may not have keys for all attributes used in
the access policy. These difficulties also translate to the unbounded setting: to make
AC16 unbounded, we need to partition in two dimensions instead of one. In addition,
we want to embed the entire policy in one ciphertext component, like AC16. This
is unlike AHM+16, which embeds each partitioned subset in a separate ciphertext
component, and thus still requires a linear number of operations during encryption.
In contrast, the costs of computing our ciphertext component embedding the policy
are essentially upper-bounded by a constant.

Performance analysis. We show that TinyABE offers advantages over other schemes
by analyzing the storage and computational costs. In this analysis, we take into ac-
count the limitations of constrained devices and low-quality networks. To this end,
we select two configurations of TinyABE, which we compare with RW13 and AC16.
Our first configuration provides sufficiently small public keys and ciphertexts for IoT
devices, whilst attaining an efficient encryption. For example, in Section 8.5.3, we
estimate the encryption costs on some IoT devices. For policies of length 100, encryp-
tion with RW13 takes over a minute, while encryption with our scheme takes only
7.6 seconds. Moreover, while the master public key of AC16 is almost a megabyte in
size, our master public key is only 2.25 kilobytes, and thus fits easily in memory of
constrained devices. Our second configuration ensures that, for policy lengths of up
to 100 attributes, the ciphertexts fit in one Ethernet packet, which has a maximum
transmission unit of 1500 bytes. In contrast, RW13 ciphertexts are too large.

Expressive, large-universe, unbounded and efficient. TinyABE is simultane-
ously expressive and unrestricted while it is configurable. Therefore, it can be config-
ured to be efficient enough for practical applications involving IoT devices and net-
works. Our scheme supports large universes, so it can efficiently support any strings as
attributes, and does not require that, in the setup, public keys are generated for each
attribute. The scheme is also unbounded2, which implicitly ensures that it attains a
better efficiency, even for large policies, compared to bounded schemes. In contrast,
the efficiency of bounded schemes with constant-size ciphertexts [AC16, Att19] de-
pends heavily on the choice of these bounds. Finally, because our scheme supports
monotone span programs, it can enforce any fine-grained policies on encrypted data.
Practitioners therefore do not need to restrict themselves to less expressive solutions
in IoT settings anymore [KHA+19, ETS20].

Comparison with other schemes. Several schemes have been introduced over
the years. Some can attain sufficiently short ciphertexts for some specific practical

2Note that our scheme is also unbounded in that it is “multi use” (Section 3.3.2).
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Table 8.1. Comparison of ABE schemes with short ciphertexts. For each scheme, we
list whether they are CP, the expressivity (Expr.), whether they are large-universe (LU),
and whether they support unbounded (Unb.) policies or sets. For the schemes with short
ciphertexts, we also give the asymptotic complexity of the storage costs of their master public
keys (MPK), secret keys (SK) and ciphertexts (CT). We consider a scheme to have short
ciphertexts if their asymptotic sizes are smaller than linear in the number of attributes, i.e.,
O(|S|) or O(|A|). Note that we have only listed schemes that are structurally different, i.e.,
that have a different PES.

Scheme CP Expr. LU Unb. Sizes
|A| |S| MPK SK CT

[EMN+09] ✓ AND ✗ ✓ ✓ O(|U|) O(1) O(1)
[HLR10] ✓ Threshold ✗ ✓ ✓ O(|U|) O(|U|) O(1)
[CZF11] ✓ AND ✗ ✓ ✓ O(|U|) O(|U|) O(1)
[ALdP11] ✗ (N)MSP ✓ ✓ ✗ O(Nk) O(Nk|A|) O(1)
[CCL+13] ✗ Threshold ✗ ✓ ✓ O(|U|) O(|U||A|) O(1)
[Tak14] ✗ NMSP ✓ ✗ ✗ O(Nk) O(Nk|A|) O(1)
[AHY15] ✓ (N)MSP ✓ ✗ ✗ O((NkN1)

2λ) O((NkN1)
4λ2) O(1)

[AHM+16] ✗ MSP ✓ ✓ ✓ O(nk) O(nk|A|) O( |S|
nk

)

[AC16, AC17b] ✓ MSP ✓ ✗ ✗ O(N1(N2 +Nk)) O(|S|N2
1 (N2 +Nk)) O(1)

[Att19] ✓ NMSP ✓ ✗ ✓ O(N1N2)) O(|S|N2
1N2) O(1)

[AT20] ✓ (N)MSP ✓ ✗ ✓ O((N2 +Nkλ)
2) O((N2 +Nkλ)

4) O(1)
[LL20b] ✗ MSP ✓ ✓ ✗ O(Nk) O(Nk|A|) O(1)

TinyABE ✓ MSP ✓ ✓ ✓ O(n̂1(n̂2 + nk)) O(n̂2
1(n̂2 + n̂k)

|S|
nk

) O(min(n1

n̂1
, n2

n̂2
))

Note: U = universe; A = access policy; S = set of attributes;
(N)MSP = (non-)monotone span program, n1, n2 = number of rows, columns of A;

N1, N2, Nk = maximum bounds on n1, n2, |S|;
n̂1, n̂2, nk = maximum partition sizes of n1, n2, |S|

context. In particular, we consider schemes that can be configured to be small enough
to fit, e.g., in memory of constrained devices or in Ethernet packets, even for large
policies. As Table 8.1 shows, all of the CP-ABE schemes of this kind incur a trade-
off: either they are not expressive, or they impose bounds (and by extension, they
are inefficient). In contrast, TinyABE is the first CP-ABE scheme to overcome these
limitations. Furthermore, compared to expressive schemes with ciphertext sizes that
grow at least in the size of the policy or set (see e.g., Table 7.1), TinyABE can be
configured to have a more efficient encryption. As such, it is feasible to implement
ABE on IoT devices (see Section 8.5.3), which are mainly assumed to be required to
encrypt and not decrypt.

8.3 Our construction: TinyABE
We present our construction. To this end, in Section 8.3.1, we give a step-by-step de-
scription on how these layering techniques can be applied, by first carefully reviewing
the scheme. Roughly, we use the techniques of Attrapadung et al. [AHM+16, Att19]
to remove the bounds on the attribute sets used in the key generation. Then, we apply
the layering techniques to the ciphertext policy, by using the partitioning approach of
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Attrapadung et al. (AHM+16) [AHM+16]. However, unlike in AHM+16, we need to
partition in two “directions” due to the two-dimensional nature of access policies. In
particular, for each policy, we split the set of rows into subsets of maximum size n̂1,
and the set of columns into subsets of maximum size n̂2. Then, for each subset, we use
a fresh “randomizer”. These randomizers are appropriately applied to the ciphertext
component of AC16 that embeds the policy. To this end, we identify which parts of
this ciphertext component correspond to the rows and which to the columns:

C ′′ =


∏

j∈[n1],k∈[n2]

gsAj,kbj,k

︸ ︷︷ ︸
columns




∏

i∈[nk],j∈[n1]

gsx
i
ρ(j)b

′
i,j

︸ ︷︷ ︸
rows

 ,

where gbj,k and gb
′
i,j denote public keys, and s is a random integer during encryption

under access structure A = (A, ρ) with A ∈ Zn1×n2
p . For example, for each partitioned

subset S ′l of [n1], we use a fresh randomizer sl to compute the partial ciphertext∏
i∈[nk],j∈S′

l
gslx

i
ρ(j)b

′
i,j . In the scheme, we use maps τ1 and τ2 to assign each row and

column, respectively, to a partition. Furthermore, we define the maps τ̂1 and τ̂2 to
map each row and column, respectively, that are in the same partition to a unique
set of public keys.

8.3.1 Removing the bounds from AC16
We show how to make AC16 unbounded, by analyzing the scheme and showing, in
steps, how the bounds can be removed by introducing more randomness.

The AC16 scheme. We briefly review the AC16 scheme [AC16]. The secret keys
SK and ciphertexts CT are of the form

SK = ({K1,j = grj ,K2,j,k = grjbj,k−vk ,K3,j,j′,k = grjbj′,k ,

K4,j,att = g
rj

∑
i∈[nk]

xi
attb

′
i,j ,K5,i,j,j′ = grjb

′
i,j′}

i∈[nk],j,j
′∈[n̂1],j ̸=j′,

k∈[n̂2],att∈S
),

CT =

(
C = M · e(g, g)αs, C ′ = gs, C ′′ =

∏
j∈[n1],k∈[n2]

gsAj,kbj,k
∏

i∈[nk],j∈[n1]

gsx
i
ρ(j)b

′
i,j

)

where gbj,k and gb
′
i,j denote public keys, v1 = α is the master-key, rj , vk ∈R Zp are

randomly chosen integers during the key generation for set S with |S| ≤ nk, and s
is a randomly chosen integer during encryption for access structure A = (A, ρ) with
A ∈ Zn1×n2

p such that n1 ≤ N1 and n2 ≤ N2 and ρ : [n1] → Zp, where N1, N2 ∈ N
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denote bounds on the policy size. Furthermore, xatt denotes the unique representation
of an attribute att (represented as a string) in Zp, which can be generated with a
collision-resistant hash function H : {0, 1}∗ → Zp.

Intuitively, decryption using a key SK for set S of a ciphertext CT with ac-
cess policy A works by “singling out” each row j ∈ Υ = {j′ ∈ [n1] | ρ(j′) ∈
S}, i.e., e(g, g)

rjs(
∑

k∈[n̂2] Aj,kbj,k+
∑

i∈[nk]
xi
ρ(j)b

′
i,j) from C ′′ (and K1,j). From this,

e(g, g)
∑

k∈[n̂2] Aj,kvk can be retrieved by using C ′, K2,j,k and K4,j,ρ(j). More con-
cretely, this can be done because the secret keys are constructed in a specific way.
That is, for all j, j′ ∈ [n̂1], it embeds the product rjbj′,k, but only in the case that
j = j′, it also embeds the secret vk (where v1 = α). Similarly, for j = j′, only
the secrets rj

∑
i x

i
attb

′
i,j are given for those attributes att that are in the set S.

For j ̸= j′, we can reconstruct rj
∑

i x
i
att

b′i,j′ for any attribute att. To decrypt, we
have to retrieve e(g, g)αs, for which we would need to pair K2,j,k with C ′ to ob-
tain e(g, g)rjbj,ks−vks. Then, the question is how we can cancel out e(g, g)rjbj,ks.
Roughly, we want to “single out” the j-th row of the access policy in the ciphertext
component C ′′. Then, we pair K1,j = grj with C ′′, and cancel out all resulting
components e(g, g)rjs(Aj′,kbj′,k+xi

ρ(j′)b
′
i,j′ ) for j ̸= j′ by using K3,j,j′,k and K5,i,j,j′

and pairing them with C ′. Note that we just argued that we can reconstruct these
components (regardless of whether ρ(j′) /∈ S). This leaves us with components
e(g, g)

rjs(
∑

k∈[n̂2] Aj,kbj,k+
∑

i∈[nk]
xi
ρ(j)b

′
i,j). We can only cancel

∏
i∈[nk]

e(g, g)rjsx
i
ρ(j)b

′
i,j

if ρ(j) ∈ S (by pairing K4,j,att with C ′), which then yields
∏

k∈[n̂2]
e(g, g)rjsAj,kbj,k .

By combining this with e(g, g)rjbj,ks−vks, we can obtain e(g, g)αs. For these last
steps, we use the following LSSS property (Definition 2.5). If S satisfies A, then
there exist εj ∈ Zp for all j ∈ Υ = {j ∈ [n1] | ρ(j) ∈ S} such that

∑
j∈Υ εjAj =

(1, 0, ..., 0) for rows Aj of matrix A. Thus, computing
∏

k∈[n̂2]
(e(g, g)rjbj,ks−vks)εjAj,k

yields
∏

j∈Υ,k∈[n̂2]
e(g, g)rjεjAj,kbj,kse(g, g)−αs. We finally obtain e(g, g)αs by raising∏

k∈[n̂2]
e(g, g)rjsAj,kbj,k to the power of εj for each j ∈ Υ.

Removing the bound on set S. First, we remove the bound nk on set S, which is
simpler than removing the bounds on the access policy. In fact, this has already been
done by Attrapadung [Att19], so we only briefly review his version of the scheme.
Note that this method also resembles the method used in [AHM+16]. The general
idea is that the set S is partitioned in arbitrary sets of maximum size nk. For each
partition, we use the randomness provided by rj and the public keys to embed the
partition like in the original scheme. However, because we have m =

⌈
|S|
nk

⌉
partitions,

we need m fresh sets of randomness {rj}j∈[n̂1] for each partition. Hence, the keys
look like this:

SK = {K1,j,l = grj,l ,K2,j,k,l = grj,lbj,k−vk ,K3,j,j′,k,l = grj,lbj′,k ,
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K4,j,att = g
rj,ι(att)

∑
i∈[nk]

xi
attb

′
i,j ,K5,i,j,j′,l = grj,lbi,j′}j,j′∈[n̂1],j ̸=j′,k∈[n̂2],

i∈[nk],l∈[m],att∈S

,

where ι : S → [m] maps the attributes of S into partitions. To ensure that the
partitions are small enough, we place a restriction on ι, i.e., |ι−1(l)| ≤ nk for all
l ∈ [m].

Removing the bound from policy A. It is considerably more difficult to remove
the bounds on the access policy A. Again, we need to introduce fresh randomness
for each partition. However, we need to partition in two directions: the rows and
the columns. Hence, we partition the access policy A = (A, ρ) by splitting the rows
into m′

1 =
⌈
n1

n̂1

⌉
partitions of maximum size n̂1, and the columns into m′

2 =
⌈
n2

n̂2

⌉
partitions of maximum size n̂2. In addition, we define the associated maps τβ : [nβ ]→
[m′

β ] for β ∈ {1, 2} that output the indices of the partitions in which the rows (for
β = 1) and columns (for β = 2) are mapped. For each partition lβ ∈ [m′

β ], we
introduce a randomizer sβ,lβ . In addition, we need to ensure that each row j ∈ [n1]

in one partition uses a unique set of public parameters {gbj′,k , gb
′
i,j′}

i∈[nk],k∈[n̂2]
(with

j′ ∈ [n̂1]). Similarly, we need to ensure that each column k ∈ [n2] in one partition uses
a unique set {bj,k′}j∈[n1] (with k′ ∈ [n̂2]). We thus define the corresponding maps
τ̂β : [nβ ]→ [n̂β ] such that τ̂β is injective on the subdomain τ−1

β (lβ) for each lβ ∈ [m′
β ].

Then, we consider how we can apply any randomness in the ciphertext without
causing incorrectness or insecurity. To this end, we analyze the AC16 ciphertext
component C ′′, which is

∏
j∈[n1],k∈[n2]

gsAj,kbj,k

︸ ︷︷ ︸
C′′

A

 ·


∏
i∈[nk],j∈[n1]

gsx
i
ρ(j)b

′
i,j

︸ ︷︷ ︸
C′′

ρ

 .

For both parts C ′′
A and C ′′

ρ , we analyze with which randomness the randomness s
needs to be replaced. As shown, the part associated with the access policy, i.e., C ′′

A,
is necessary to retrieve the secret e(g, g)sAj,kvk , such that eventually e(g, g)αs can be
retrieved by computing

∏
j∈Υ,k∈[n2]

e(g, g)εjsAj,kvk . Note that, here, it is important
that s is associated with k = 1 to ensure correctness of the scheme. However, for k > 1,
we can use a different randomness. In short, for the C ′′

A part, we use the randomness
associated with the m′

2 column partitions, which yields the transformation:

C ′′
A 7→

∏
j∈[n1],k∈[n2]

gs2,τ2(k)Aj,kbτ̂1(j),τ̂2(k) ,
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where we require that s2,τ2(1) = s to ensure correctness.
As shown, the part of C ′′ associated with the attribute map ρ, i.e., C ′′

ρ ,
ensures that the message is, albeit indirectly, sufficiently blinded. That is,
in the “singling out” of row j, we could only obtain

∏
k e(g, g)

rjsAj,kbj,k (now:∏
k e(g, g)

rj,ι(ρ(j))s2,τ2(k)Aj,kbτ̂1(j),τ̂2(k)) if we could cancel out e(g, g)rjsx
i
ρ(j)b

′
i,j . This

only worked if ρ(j) ∈ S. In this case, using a fresh set {b′i,j}i∈[nk]
for each row j

ensures that there is sufficient randomness for the entire partition. As such, it is
straightforward that the C ′′

ρ part needs to be randomized for each partition of n̂1

rows, like in the removal of the bound on S. For the row partitions, we had intro-
duced the random integers s1,l1 for each partition l1 ∈ [m′

1], and substituting s for
these yields:

C ′′
ρ 7→

∏
i∈[nk],j∈[n1]

gs1,τ1(j)x
i
ρ(j)b

′
i,τ̂1(j) .

Finally, we point out that the randomizers s1,l1 and s2,l2 are only used in combi-
nation with the public keys b′i,j and bj,k, respectively. In our proofs, it becomes clear
that we can therefore set s2,l2 = s1,l2 for all l2 ∈ [m′

2].

8.3.2 The scheme
We give our scheme in the selective-security setting. A fully secure variant can be
obtained by applying the AC17 [AC17b] transformation to our PES (Section 8.3.3).

Construction 8.1: TinyABE

TinyABE is defined as follows.

- Setup(λ): On input the security parameter λ, the algorithm generates
three groups G,H,GT of prime order p with generators g ∈ G and h ∈ H,
and chooses a pairing e : G × H → GT . It sets the universe of attributes
U = Zp, and chooses n̂1 ∈ N and n̂2 ∈ N as the maximum number of rows
and columns that fit into one partition, respectively. It also chooses nk ∈ N,
which is the maximum partition size of the keys. It then generates random
α, bj,k, b

′
i,j ∈R Zp for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2]. It outputs MSK =

(α, {bj,k, b′i,j}i∈[nk],j∈[n̂1],k∈[n̂2]
) as the master secret key and publishes the

domain parameters (p,G,H,GT , n̂1, n̂2, nk) and the master public key as

MPK = (g, h,A = e(g, h)α, {Bj,k = gbj,k , B′
i,j = gb

′
i,j}

i∈[nk],j∈[n̂1],k∈[n̂2]
).

- KeyGen(MSK,S): On input a set of attributes S, the algorithm computes
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m =
⌈
|S|
nk

⌉
, defines a partition map ι : S → [m] such that |ι−1(l)| ≤ nk

for each l ∈ [m], and generates random elements rj,l, vk ∈R Zp for each
j ∈ [n̂1], k ∈ [2, n̂2], l ∈ [m], setting v1 = α and computes the secret key as

SKS = ({K1,j,l = hrj,l ,K2,j,k,l = hrj,lbj,k−vk ,K3,j,j′,k,l = hrj,lbj′,k ,

K4,j,att = h
rj,ι(att)

∑
i∈[nk]

xi
attb

′
i,j ,K5,i,j,j′,l = hrj,lbi,j′}j,j′∈[n̂1],j ̸=j′,k∈[n̂2],

i∈[nk],l∈[m],att∈S

).

- Encrypt(MPK,A,M): Message M ∈ GT is encrypted under A = (A, ρ)

with A ∈ Zn1×n2
p and ρ : [n1] → U by computing m′

1 =
⌈
n1

n̂1

⌉
and m′

2 =⌈
n2

n̂2

⌉
, and defining partition maps for each β ∈ [2]: τβ : [nβ ] → [m′

β ] such

that |τ−1
β (lβ)| ≤ n̂β for each lβ ∈ [m′

β ]. For τ2, we require that τ2(1) = 1.
Define τ̂β : [nβ ] → [n̂β ] such that τ̂β is injective on the subset τ−1

β (lβ) for
each lβ ∈ [m′

β ]. Then, generate random integers s, sl′ ∈R Zp for each
l′ ∈ [2,max(m′

1,m
′
2)], set s1 = s, and compute the ciphertext as

CTA =

(
C = M ·As, {Cl1 = gsl1}l1∈[m′

1]

C ′ =

 ∏
j∈[n1],k∈[n2]

B
sτ2(k)Aj,k

τ̂1(j),τ̂2(k)

 ∏
i∈[nk],j∈[n1]

(B′
i,τ̂1(j)

)sτ1(j)x
i
ρ(j)

).
- Decrypt(SKS ,CTA): Suppose that S satisfies A, let Υ = {j ∈ [n1] | ρ(j) ∈
S}. Then, {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0) (Defini-

tion 2.5). Message M is retrieved by computing C · C2 · C3 · C4 · C5/C1,
where

C1 =
∏
j∈Υ

e(C ′,K
εj
1,τ̂1(j),ι(ρ(j))

), C2 =
∏

j∈Υ,k∈[n2]

e(Cτ2(k),K
εjAj,k

2,τ̂1(j),τ̂2(k),ι(ρ(j))
),

C3 =
∏

j∈Υ,j′∈[n1]\{j},k∈[n2]

e(Cτ2(k),K
εjAj′,k
3,τ̂1(j),τ̂1(j′),τ̂2(k),ι(ρ(j))

),

C4 =
∏
j∈Υ

e(Cτ1(j),K
εj
4,τ̂1(j),ρ(j)

),

C5 =
∏

i∈[nk],j∈Υ,j′∈[n1]\{j}

e(Cτ1(j′),K
εjx

i
ρ(j′)

5,i,τ̂1(j),τ̂1(j′),ι(ρ(j))
).
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Correctness. The scheme is correct, i.e.,

C2 · C3 = e(g, h)
∑

j∈Υ,j′∈[n1],k∈[n2] εjsτ2(k)(rτ̂1(j),attAj′,kbj′,k−Aj,kvτ̂2(k))

= e(g, h)
∑

j∈Υ,j′∈[n1],k∈[n2] εjrτ̂1(j),ι(ρ(j))sAj′,kbj′,k · e(g, h)−αs,

C6 = C · C2 · C3

= M · e(g, h)
∑

j∈Υ,j′∈[n1],k∈[n2] εjrτ̂1(j),ι(ρ(j))sτ2(k)Aj′,kbj′,k

C4 · C5 = e(g, h)
∑

i∈[nk],j∈Υ,j′∈[n1]
εjrτ̂1(j),ι(ρ(j))sτ1(j′)x

i
ρ(j′)b

′
i,j′

C−1
1 = e(g, h)

−
∑

i∈[nk],j∈Υ,j′∈[n1],k∈[n2]
εjrτ̂1(j),ι(ρ(j))sτ2(k)Aj′,kbj′,k

·e(g, h)−
∑

i∈[nk],j∈Υ,j′∈[n1],k∈[n2]
εjrτ̂1(j),ι(ρ(j))sτ1(j′)x

i
ρ(j′)b

′
i,j′ ,

C7 = C4 · C5 · C−1
1

= e(g, h)−
∑

j∈Υ,j′∈[n1],k∈[n2] εjrτ̂1(j),ι(ρ(j))sτ2(k)Aj′,kbj′,k ,

C6 · C7 = C · C2 · C3 · C4 · C5/C1 = M.

8.3.3 The associated pair encoding scheme
To prove security, we define the pair encoding of TinyABE, for which we use the
variables n̂1, n̂2, nk,S, ι,ρ, τ1, τ2, τ̂1, τ̂2, n1, n2, λi,m,m′

1,m
′
2 from Construction 8.1.

Construction 8.2: PES for TinyABE

- Param(par): Let b = ({bj,k, b′i,j}i∈[nk],j∈[n̂1],k∈[n̂2]
).

- EncK(S): Let

k(r, r̂,b) = ({k2,j,k,l = rj,lbj,k − vk, k3,j,j′,k,l = rj,lbj′,k,

k4,j,att = rj,ι(att)
∑

i∈[nk]

xi
attb

′
i,j , k5,i,j,j′,l = rj,lbi,j′}i∈[nk],j,j

′∈[n̂1],j ̸=j′,
k∈[n̂2],l∈[m],att∈S

),

where r = ({rj,l}j∈[n1],l∈[m]) are non-lone variables and r̂ = ({vk}k∈[2,n2])
are lone variables.

- EncC((A, ρ)): Let c(s, ŝ,b) = (c′), where

c′ =
∑

j∈[n1],k∈[n2]

sτ2(k)Aj,kbτ̂1(j),τ̂2(k) +
∑

i∈[nk],j∈[n1]

sτ1(j)x
i
ρ(j)b

′
i,τ̂1(j)

and s = ({sl′}l′∈[max(m′
1,m

′
2)]
) are non-lone variables.
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Theorem 8.1

The PES for TinyABE in Construction 8.2 satisfies Sym-Prop (Definition 4.2).

Corollary 8.1

Because Construction 8.2 satisfies Sym-Prop, Construction 8.1 is selectively se-
cure (Theorem 4.1).

8.4 Security proof
We prove the symbolic property for TinyABE (Construction 8.2) similarly as for
GLUE (Construction 7.2). In particular, we use the layering techniques by Rouse-
lakis and Waters [RW13] to make the proof by Agrawal and Chase [AC17b, AC17c]
unbounded. Roughly speaking, we use the layering techniques to embed all rows
that are mapped to the same public-key components b′i,j and bj,k for j ∈ [n̂1] in
these public-key components. Similarly, we use the layering techniques to embed all
columns that are mapped to the same public-key components bj,k for k ∈ [n̂2].

8.4.1 The selective symbolic property
Our PES satisfies the selective security property. Let χ1,j = {j′ ∈ [n1] | τ̂1(j′) =
τ̂1(j)} and χ2,k = {k′ ∈ [n2] | τ̂2(k′) = τ̂2(k)} for all j ∈ [n̂1], k ∈ [n̂2]. Let Υ as before
and set Υ = [n1]\Υ. Because S does not satisfy A, there exists w = (1, w2, ..., wn2

) ∈
Zn2
p such that Ajw

⊺ = 0 for all j ∈ Υ (Definition 2.5). Let Ĝj,k(xatt) =
∑

i∈[nk]
(xi

att−
xi
ρ(j))1

d1×d2

(i,j,k),τ1(j)
for all j ∈ [n1], k ∈ [n2]. Let Ψl = {att ∈ S | ι(att) = l} be the

l-th partition of S for all l ∈ [m]. Then, for each l ∈ [m], we define Gl(xatt) =∏
att′∈Ψl

(xatt − xatt′) =
∑nk

i=0 ui,lx
i
att. We make the following substitutions:

b′0,j :
∑

j′∈χ1,j ,k′∈[n2]

Aj′,k′

1d1×d2

(1,j′,k′),τ1(j′)
−
∑

i′∈[nk]

xi′

ρ(j′)1
d1×d2

τ1(j′),(2,i′,j′,k′)


b′i,j :

∑
j′∈χ1,j ,k′∈[n2]

Aj′,k′1d1×d2

τ1(j′),(2,i,j′,k′)

bj,k : −
∑

k′∈χ2,k

1d1×d2

τ2(k′),(1,j,k), sl′ : 1d1

l′ , vk : −wk

 ∑
k′∈χ2,k

1d1

τ2(k′)
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rj,l :
∑

k′∈[n2]

wk′

1
d2

(1,j,k′) −
∑

i′∈[nk],j′∈χ1,j∩Υ

ui′,l

Gl(xρ(j′))
1
d2

(2,i′,j′,k′)


for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2], l ∈ [m], l′ ∈ [max(m′

1,m
′
2)], where the column

indices (1, j, k) and (2, i, j, k) are mapped injectively in the interval [d2], where d1 =
max(m′

1,m
′
2) and d2 = (nk+2)n1n2. It follows quickly that the polynomials evaluate

to 0 (see the full version [VA22c]).

8.4.2 The co-selective symbolic property
For the co-selective property, we generalize the co-selective proof by Agrawal and
Chase [AC17c]. In this proof, the coefficients of the polynomials Gl(xatt) are embed-
ded in the variables b′i,j . We make the following substitutions:

b′i,j :
∑
l∈[m]

ui,l1
d1×d2

(1,j,l),(j,l), bj,k :
∑
l∈[m]

1d1×d2

(2,k),(j,l), vk : 1d1

(2,k),

rj,l : 1
d2

(j,l), sl′ :
∑

k∈τ−1
2 (l′)

wk1
d1

(2,τ̂2(k))
−

∑
j∈τ−1

1 (l′)∩Υ,l∈[m]

Ajw
⊺

Gl(xρ(j))
1d1

(1,τ̂1(j),l)

for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2], l ∈ [m], l′ ∈ [max(m′
1,m

′
2)], where the row indices

(1, j, l) and (2, k) in the interval [d1], and the column indices (j, l) are mapped injec-
tively in the interval [d2], where d1 = n̂1m+ n̂2 and d2 = n̂1m. It follows quickly that
the polynomials go to 0 (see the full version [VA22c]).

8.5 Performance analysis
We analyze the performance of TinyABE for two configurations relevant to IoT set-
tings. To illustrate the efficiency trade-offs and the advantages of TinyABE more
clearly, we compare the efficiency of the two configurations with two large-universe
CP-ABE schemes. In particular, we compare RW13 [RW13], which is an unbounded
CP-ABE scheme with linear-size ciphertexts, and the version of AC16 [AC16] with
unbounded attribute sets and constant-size ciphertexts: Att19 [Att19]. To effectively
compare the efficiency of all relevant schemes, we use the same techniques as for
GLUE (Section 7.6). In contrast, however, we use the pairing-friendly elliptic-curve
group BLS12-381 [BLS02, Bow] for our analysis. For this curve, Scott has recently
performed measurements on several IoT devices [Sco20], which we will use in our
analysis in Section 8.5.3. We have run these benchmarks on a 1.6 GHz Intel i5-8250U
processor3 (see the full version [VA22c]).

3Our code is available as a Jupyter notebook at github.com/mtcvenema/tinyabe.

github.com/mtcvenema/tinyabe
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8.5.1 Computational costs of TinyABE
We list the computational costs of the key generation, encryption and decryption
algorithms by listing the number of group operations required by these (see the full
version [VA22c] for further details on our analysis):

• Key generation: n̂1(m+ n̂1n̂2m+ |S|+ nk(n̂1 − 1)m) FBEs in H;

• Encryption: one exponentiation in GT , m FBEs in G, one (nk min(n̂1, |Υ|))-
MBEs in G, the minimum of the following two costs:

– one (n̂1n̂2)-MBE in G;
– one m′

2-MBE in G and n1n2 multiplications in G;

and the minimum of the following two costs:

– one n̂1-MBE in G;
– one m′

1-MBE and n1 multiplications in G.

(Note that the ciphertext component C ′ can be computed in multiple ways,
which we show in more detail in the full version [VA22c]. Specifically, the costs
are upper bounded by a constant.)

• Decryption: one (m′
1 + 1)-multi-pairing operation, and |Υ|n̂1n2 + nkn1 expo-

nentiations and (|Υ| − 2)nkn1 + 2|Υ| multiplications in H.

Two configurations of TinyABE. To investigate the feasibility of TinyABE in
IoT settings, we analyze the efficiency of TinyABE for two configurations, i.e.,

1. where encryption is optimal: (nk, n̂1, n̂2) = (1, 3, 3);

2. where ciphertexts are small: (nk, n̂1, n̂2) = (1, 13, 13).

In particular, for the latter configuration, the ciphertexts are small enough such that
they fit in one Ethernet packet for policy sizes |A| ≤ 100.

8.5.2 Comparison with RW13 and AC16/Att19
We compare the efficiency of TinyABE with RW13, a scheme with linear-size cipher-
texts and Att19, the variant of AC16 with constant-size ciphertexts that is unbounded
in sets S. In particular, we focus on the ciphertext size and encryption efficiency, as
ultimately, we want to optimize the scheme for low-quality networks and resource-
constrained encryption devices. For all schemes, we require that they can support any
|A|, |S| ≤ 100, thus we set the upper bounds N1, N2 of Att19 on the number of rows
and columns to N1 = N2 = 100. Because the key sizes and the key generation costs
are linear and the differences between the schemes are large, we put those results in
tables, and the rest in graphs.
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Scheme
Key sizes (in KB)

Size of the set
1 10 100

TinyABE(1,3,3) 7.39 73.89 738.87
TinyABE(1,13,13) 450.71 4507.09 45.1·103

RW13 0.76 4.17 38.27
Att19 191.3·103 1.9 ·106 19.1 ·106

(a) Secret keys
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Figure 8.1. The key and ciphertext sizes of TinyABE(nk,n̂1,n̂2), RW13 and Att19.

Storage costs. As Figure 8.1 shows, our secret keys are generally much larger than
RW13. Nevertheless, our ciphertexts are much smaller. Our scheme’s configurations
never exceed the maximum RAM size, and TinyABE(1,13,13) never exceeds the max-
imum transmission unit (MTU), which we show to be beneficial in Section 8.5.3.
Compared to Att19, our keys are much smaller, while our ciphertexts are marginally
larger. Importantly, our master public key is, at most, 19.13 KB, in contrast to the
957 KB of Att19. In Section 8.5.3, we show that our scheme can thus be used in
resource-constrained devices while Att19 cannot.

Computational costs. Similarly, Figure 8.2 shows that our key generation and de-
cryption costs are higher than RW13, but our encryption is much more efficient. We
show in Section 8.5.3 that this gain in encryption efficiency can make a difference be-
tween deployment or not, as it reduces the encryption timings on resource-constrained
devices from minutes to mere seconds. (Also note that our key generation can be ex-
tended to an online/offline variant (see the full version [VA22c]). This allows the
authority that generates keys to prepare many keys in advance (e.g., 0.7-44 MB per
100 attributes for (nk, n̂1, n̂2) ∈ {(1, 3, 3), (1, 13, 13)}), which mitigates any poten-
tial issues caused by the large costs.) Moreover, all of our configurations outperform
Att19, notably reducing the key generation costs to more feasible timings. While
Att19 takes at least eight minutes to compute a key, our scheme never requires more
than two minutes, even for large sets.
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Scheme
Key generation costs (in ms)

Size of the set
1 10 100

TinyABE(1,3,3) 20.3 202.8 2 ·103
TinyABE(1,13,13) 1.2 ·103 12.4 ·103 123.7 ·103 (≈ 2 minutes)

RW13 2.1 11.4 105.1
Att19 525.3 ·103 (> 8 minutes) 5.3 ·106 (> 1 hour) 52.5 ·106 (> 14 hours)

(a) Key generation
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Figure 8.2. The computational costs (in milliseconds (ms)) of key generation, encryption
and decryption with TinyABE(nk,n̂1,n̂2), RW13 and Att19.

Comparison with other linear-sized schemes. The main reason why we compare
our scheme with RW13 is because it is closely related to our scheme, and because it has
linear-size ciphertexts and it is unbounded. In addition, to illustrate the advantages
of TinyABE in IoT settings, we want to compare mainly its encryption (and the
public key and ciphertext sizes) with a linear-sized scheme such as RW13. Because
encryption with other popular large-universe schemes [BSW07, AC17a, ABGW17] is
roughly as efficient as RW13 (see the full version [VA22c]), we expect that TinyABE
compares similarly as favorably to those schemes as to RW13.

8.5.3 Advantages in IoT settings
We showcase some practical advantages of TinyABE in IoT settings.

Packet loss in low-quality networks. One of the main features of TinyABE is
that the ciphertexts can be configured to be small, which is beneficial in low-quality
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Figure 8.3. The probability that a partial ciphertext needs to be retransmitted for various
packet loss rates.

networks. In general, large ciphertexts may increase the risk that at least one of
the packets is dropped during transmission, in which case the dropped packets need
to be retransmitted [PST20], delaying the message’s time of arrival. This may be
problematic for resource-constrained devices, such as IoT devices, because their com-
munication channels are often characterized by high packet loss rates (see RFC85764).

Through an example, we briefly illustrate that the increase in size of the ciphertext
may increase the probability that one of the packets drops. For this example, we use a
similar approach as in [PST20]. We consider the maximum transmission unit (MTU)
of an Ethernet connection, i.e., 1500 bytes, and consider varying packet loss rates
between 1% and 20%, with steps of 1%. In general, if we consider the shortest round-
trip time, then the expected additional time incurred by re-transmitting a packet
is 6.193 ms. In comparison, we can encrypt a message under a policy of length 20
with our least efficient configuration of our scheme in that time (Figure 8.2), so this
additional overhead is relevant in practice. To illustrate the effect of packet loss on
the efficiency of the scheme, we analyze the probability that at least a part of the
ciphertext is dropped in Figure 8.3. As the figures show, TinyABE never exceeds
50%, even for large policies and high packet loss rates. In contrast, for small policies,
RW13 exceeds 50% at high rates (i.e., > 20%) and for large policies at small rates (i.e.,
> 3.5%). For large policies and high rates, it is almost certain that a partial RW13
ciphertext drops. Therefore, our scheme clearly provides an advantage in low-quality
networks compared to schemes with linear-size ciphertexts such as RW13.

4https://tools.ietf.org/html/rfc8576

https://tools.ietf.org/html/rfc8576
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(a) Arduino Nano 33 BLE Cortex-M4
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Figure 8.4. Conservative estimates of the encryption costs on two IoT devices.

Resource-constrained devices: memory. In contrast to other expressive schemes
such as RW13 and Att19, the ciphertexts and master public key of TinyABE easily
fit in memory, even of resource-constrained devices. In RFC72285, three classes of
constrained devices are listed: with < 10, ≈ 10 and 50 KB of RAM, and with < 100,
≈ 100 and 250 KB of flash memory (ROM), respectively. In practice, the master
public key can be stored in flash memory, such that only the components that are
needed during encryption are loaded in RAM. While the RW13 public key (of 0.89
KB) fits easily in flash memory, our public keys are fairly large, e.g., 2.25-19.13 KB
for (nk, n̂1, n̂2) ∈ {(1, 3, 3), (1, 13, 13)}. Although it leaves slightly less space for the
code and other applications than RW13 would, it easily fits in devices with at least
100 KB of flash memory. This is not the case for Att19, as the master public key of
957 KB is much larger than 100 KB for maximum policy length 30 or higher.

Additionally, while the ciphertexts of our scheme as well as the RW13 scheme
would easily fit in 50 KB of RAM (even for large policies), it would be more problem-
atic for devices with only 10 KB of RAM to fit RW13 ciphertexts. In fact, a ciphertext
with policy length 33 already pushes the limit of 10 KB, and leaves no space for any-
thing else, such as the payload. In contrast, TinyABE’s ciphertexts easily fit in 10 KB
of memory, even for large policies. For n̂1 = 3 and policy length n1 = 100, the size of
the ciphertext is 3.84 KB. For n̂1 = 13, the size of the ciphertext is 1.41 KB, which
leaves an ample 8.59 KB of memory for, e.g., the payload and optimization through
precomputation. In this way, we may be able to gain some significant speedup [FA17].

5https://tools.ietf.org/html/rfc7228

https://tools.ietf.org/html/rfc7228
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Resource-constrained devices: speed. As shown, for some parameter choices, our
scheme provides fast encryption, even for large inputs. For instance, for (nk, n̂1) =
(1, 3), our encryption algorithm is several factors faster than RW13, which may be
desirable for resource-constrained devices. Recently, Scott [Sco20] tested the perfor-
mance of some operations on the BLS12-381 curve on IoT devices. These results
show that the devices with the slowest and fastest timings would approximately re-
quire 1.175 and 0.075 seconds, respectively, per exponentiation in G. In Figure 8.4,
we estimate the encryption costs for the two fastest devices measured in [Sco20]. For
the fastest device, our most efficient configuration requires only 7.6 seconds to encrypt
with a policy of length 100, while RW13 requires one minute and 15 seconds.

8.6 Future work
Our work paves the way for further improvements in the design and implementation
of ABE in IoT settings. While we have theoretically analyzed the feasibility of imple-
menting our schemes in practical settings such as low-quality networks and embedded
devices, it would be useful to empirically test them. Notably, our conservative esti-
mates for the IoT devices in Section 8.5.3 are based on the benchmarks in [Sco20].
By implementing the scheme—possibly using optimizations (e.g., through precompu-
tation [FA17]) that have not been used in [Sco20] or using curves with more efficient
arithmetic in G [CDS20]—it may perform even better than our estimates suggest.
Finally, similarly as for GLUE (Section 7.8), we may want to achieve security under
a non-parametrized assumption.

8.7 Conclusion
We proposed a new configurable unbounded large-universe CP-ABE scheme, mainly
designed for settings with embedded devices or low-quality networks. We have proven
the scheme secure in the AC17 framework, yielding efficient constructions that are
provably fully secure. TinyABE can be configured such that encryption is very ef-
ficient, outperforming state-of-the-art CP-ABE schemes by several factors for large
policies. Additionally, the ciphertexts are much shorter than those of schemes with
linear-size ciphertexts, and are therefore more likely to fit in the constrained memo-
ries of embedded devices. Due to this shortness, ciphertexts are also much less likely
to drop during transmission. While the ciphertexts are longer than those of schemes
with constant-size ciphertexts, our public and secret keys are much shorter, and the
computational costs are much lower. For these reasons, TinyABE is more practical
for embedded devices and low-quality networks.
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Chapter 9

Efficient and generic transformations for
chosen-ciphertext secure PE

Although much progress has been made to generically achieve CPA-security
efficiently, in practice, we also require CCA-security. Because achieving CCA-
security on a case-by-case basis is a complicated task, several generic conversion
methods have been proposed. However, these conversion methods may incur
a significant efficiency trade-off. Notably, for CP-ABE, all generic conversion
methods provide a significant overhead in the key generation, encryption or
decryption algorithm. Additionally, many generic conversion techniques use
one-time signatures to achieve authenticity, which are also known to signifi-
cantly impact the efficiency.

In this chapter, we present a new approach to achieving CCA-security as
generically and efficiently as possible, by splitting the CCA-conversion into
two steps. The predicate of the scheme is first extended in a certain way,
which is then used to achieve CCA-security generically e.g., by combining it
with a hash function. To facilitate the first step efficiently, we also propose a
novel predicate-extension transformation for a large class of pairing-based PE—
covered by the pair and the predicate encodings frameworks—which incurs only
a small constant overhead for all algorithms. In particular, this yields the most
efficient generic CCA-conversion for CP-ABE.

9.1 Introduction
Over the years, many works have systematized and improved the techniques to achieve
full security of pairing-based PE against chosen-plaintext attacks [Wee14, Att14a,
CGW15, Att16, AC16, AC17b]. While these frameworks support CPA-security, in
practice, it is often recommended or required that the scheme also provides security
against chosen-ciphertext attacks (CCA) [NY90, Sho98]. To this end, many works
have proposed CCA-secure PE schemes, e.g., [BF01, KG06, Gen06, KV08, TKN21].
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Moreover, to achieve CCA-security generically, any of the proposed transformations
can be used, e.g.,

• using non-interactive zero-knowledge (NIZK) proofs of well-formedness [BFM88];

• Fujisaki-Okamoto (FO) [FO99, HHK17];

• Canetti-Halevi-Katz (CHK) [CHK04];

• Boneh-Katz (BK) [BK05];

• Abe et al. (ACIK) [ACIK10];

• Yamada et al. (YA(SS)HK) [YAHK11, YAS+12], which consists of two trans-
formations: one for delegatable ABE and one for verifiable ABE;

• Blömer-Liske (BL) [BL16];

• Koppula-Waters (KW) [KW19a].

However, each of these generic transformations has a drawback. First, the transfor-
mation may be restricted to, e.g., hierarchical IBE (HIBE) [CHK04, BK05, ACIK10]
or ABE [YAHK11, YAS+12]. Second, the FO-transform, the NIZK approach, and the
transformations for verifiable schemes [YAHK11, YAS+12, BL16] incur an additional
cost during decryption that is linear in the sizes of x and y, which is a significant cost
for many ABE or inner-product encryption [KSW08] schemes. Alternatively, these
additional costs may be linear in the security parameter1, such as in KW [KW19a]
and the transformations for delegatable CP-ABE [YAHK11]. Notably, for CP-ABE,
no CCA-transformations yield a small and constant overhead.

In addition, most of these transformations—except for the NIZK, FO, BK and
ACIK-transformations—use one-time signatures (OTS) to achieve authenticity of the
ciphertexts. OTSs incur a considerable trade-off in storage and computational effi-
ciency: either signing is efficient but the keys and signatures are large, or the keys
and signatures are short but signing is inefficient. The BK-transformation improves
on the CHK-transformation by replacing the OTS by a message authentication code
(MAC) and a primitive called “encapsulation”, which can be constructed from a hash
and yields no such efficiency trade-off [BK05]. Encapsulation allows the encrypting
user to commit to a secret value, which is later used to compute a MAC on the ci-
phertext to attain ciphertext authenticity. Subsequently, the ACIK-transformation
improves on the BK-transformation by applying a primitive called a “random-prefix
collision-resistant” hash directly to the ciphertext. The encrypting user is therefore
not required to commit to a secret value (which also needs to be encrypted), and thus,
minimizes the storage overhead.

1Typically, the security parameter is fixed, e.g., equal to 128. Nevertheless, the additional costs
are large.
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Table 9.1. Comparison of the properties of the several CCA-transformations and our new
transformations. For our CCA-transformations, we also consider alternative pathways based
on the existing transformations to perform the two steps.

Variant Primitives used Applicable to Requirements
FO [FO99, HHK17] hash All PE -

CHK [CHK04] OTS (H)IBE -
BK [BK05] encapsulation, MAC, PRG (H)IBE -

ACIK [ACIK10, §7.2] RPC (H)IBE partitioned KEM
YA(SS)HK [YAHK11, YAS+12] OTS ABE delegatable or verifiable ABE

BL [BL16] hash All PE verifiable pair encodings
KW [KW19a] PRG, OTS All PE -

Step 1 with CHK/BK - (H)IBE -
Step 1 with YA(SS)HK - ABE delegatable ABE

Step 2 with BK encapsulation, MAC, PRG All PE -
Step 1 (new) - All PE pair and predicate encodings
Step 2 (new) RPC All PE decomposable PE

Note: PRG = pseudo-random generator,
RPC = random-prefix collision-resistant hash

9.1.1 Our contribution
In this chapter, we focus on generically achieving CCA-security for any PE as effi-
ciently as possible. To this end, we propose a new high-level approach in the design of
CCA-security transformations, by splitting any such transformations into two explicit
steps. In the first step, the predicate of the scheme is extended. In the second step,
the predicate-extended scheme is used to achieve CCA-security. Although several ex-
isting transformations take these steps implicitly, explicitly considering them as two
steps may lead to more efficient (yet generic) constructions than previous methods
allowed. To illustrate that, we propose two novel transformations that perform these
two steps efficiently.

Warm-up: existing transformations. Apart from the NIZK, FO and KW trans-
formations, all aforementioned generic transformations exploit the structure of the
predicate to efficiently achieve CCA-security. Roughly, they all follow a similar ap-
proach: during encryption, the encrypting user commits to some value, which is then
embedded in the predicate in addition to the original predicate. For example, for
(H)IBE [CHK04, BK05, ACIK10], this value is embedded in the (additional “layer”
of the) identity, and for delegatable CP-ABE, the bit-representation of the value is
encoded as an AND-policy (and is taken in conjunction with the original policy).
Because these transformations exploit the specific structures of the predicates, they
are therefore only applicable to those predicates. Furthermore, depending on the
technique, the value to which is commited is either generated independently of the
ciphertext [CHK04, BK05, YAHK11] or by applying a hash with a specific property
to the ciphertext [ACIK10, BL16]. Although the latter requires that the ciphertext is
of a specific structure (which many pairing-based schemes satisfy), it relies on fewer
primitives and yields less storage overhead in the ciphertext.
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Figure 9.1. A high-level overview of the transformations and our associated definitions
and theorems that prove security of the given transformations. The double-edged arrows
indicate that we give a novel provably secure generic transformation in this chapter, while
the normal-edged arrows provide transformations that have been given in other works.

Our transformations. On a high level, our approach consists of two steps with
varying “levels of genericness” (of which an overview is shown in Figure 9.1). First,
we transform a CPA-secure PE ΓPE,IND-CPA,P for predicate P into a CPA-secure PE
ΓPE,IND-CPA,P ′ for extended predicate P ′. For this step, we propose novel generic
constructions in the pair and predicate encodings frameworks. (We also show that
our transformation for predicate encodings preserves the attribute-hiding property in
[CGW15].) As a result, many pairing-based PE schemes can be transformed using this
construction. Second, we transform any CPA-secure PE ΓPE,IND-CPA,P ′ for extended
predicate P ′ into a CCA-secure PE ΓPE,IND-CCA,P for the original predicate P . This
step can be done by using similar approaches as CHK and BK. We also give a new
transformation based on the ACIK-approach. This new transformation applies to any
PE scheme for which the ciphertexts are “decomposable” (which is a similar notion
to that of partitioned in [ACIK10]).

Although our transformation is less generic than fully generic transformations
such as FO and KW, ours is more generic than most of the other transformations
(Table 9.1). In fact, our approach can be seen as an efficient generalization of the
transformations that exploit the specific structures of the predicate, i.e., CHK, BK,
ACIK, and YA(SS)HK. However, by performing the transformation in two steps, we
also allow for more efficient (yet generic) constructions. We show that this is especially
beneficial for CP-ABE, for which existing such transformations always induce a linear
computational overhead in at least one of the algorithms.

Step one: securely extending the predicate. We first extend the predicate P
to some predicate P ′ = CCA[P ]. The idea behind this is similar to the approach for
hierarchical IBE [CHK04, BK05, BCHK07] and delegatable KP-ABE by Yamada et
al. (YAHK) [YAHK11], and is later also applied using wildcards by Tomida et al.
[TKN21]. Roughly, the secret key predicate y is extended to y∧y′, where y′ is either an
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attribute or a wildcard ∗, and the ciphertext predicate x is extended to (x, x′), where x′

is an attribute. The predicate is satisfied if P (x, y) and either y′ = ∗ or y′ = x′ holds.
We provide a new transformation in the pair and predicate encodings framework
that extends the predicate in this way. The computational overhead incurred by
our transformation is a low constant, and unlike YAHK, we do not require the PE
scheme to be a delegatable KP-ABE for the transformation to work. Because we
generically transform any PE into a scheme with this specific extended predicate,
we can also efficiently support CCA-security in, e.g., CP-ABE. Roughly, we take an
AND-composition over the original PE and an “all-or-one-identity” IBE, by using the
ideas from Ambrona et al. [ABS17] and Attrapadung [Att19]. For the “all-or-one-
identity” IBE, we use the first scheme of Kiltz and Vahlis [KV08] as inspiration, which
is essentially implied by a composition of the Boneh-Boyen (BB) IBE [BB04] with a
wildcard variant of the same scheme.

Step two: achieving CCA-security. We first consider on a high level what the
CCA-transformation looks like. Let Γ = (Setup,KeyGen,Encaps,Decaps) be a pred-
icate key-encapsulation scheme (possibly derived from a PE) for the extended predi-
cate, such that that ciphertext is of the form

Encaps(MPK, (x, x′)) = (K,CT1,CT2,(x,x′)),

where MPK is the master public key generated in the Setup, K is the encapsulated key
to be used to symmetrically encrypt, CT1 is some randomized part of the ciphertext
that is independent of extended predicate (x, x′), and CT2,(x,x′) denotes the rest
of the ciphertext. Following the approach by Kiltz and Vahlis [KV08] and Abe et
al. (ACIK) [ACIK10], we first split the key-encapsulation algorithm into two parts,
and then introduce an authenticated encryption scheme SE = (EncK,DecK) and a
random-prefix collision-resistant hash function RPC (which takes as input a random
prefix k and another input to be hashed), i.e.,

Encaps(MPK, (x, x′)) = (K,CT1︸ ︷︷ ︸
Encaps1

,CT2,(x,x′)︸ ︷︷ ︸
Encaps2

).

Then, we obtain the CCA-transformed encryption as follows

Encrypt′(MPK, x ,M) = ( CTsym = EncK(M∥CT2,(x,x′)) ,CT1,CT2,(x,x′), k),

where (K,CT1) ← Encaps1(MPK), k ∈R {0, 1}λ, x′ ← RPC(k,CT1), and then
CT2,(x,x′) ← Encaps2(MPK, (x, x′)).

Proving CCA-security. We prove CCA-security of the proposed generic construc-
tion similarly as other transformations [CHK04, BK05, KV08, ACIK10, YAHK11].
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Specifically, the decryption queries are answered as follows. Suppose that CTx =
(CTsym,CT1,CT2,(x,x′)) is some ciphertext and y is some predicate such that P (x, y) =
1, queried by the attacker. Then, the challenger can generate a secret key for (y, y′ =
x′), and decrypt the ciphertext. The challenger rejects a decryption query if it is sim-
ilar to the challenge ciphertext CT∗

x∗ = (CT∗
sym,CT

∗
1,CT2,(x∗,x′∗)), i.e., if CT1 ̸= CT∗

1

and x′ = x′∗, or if K = K∗ and CTsym ̸= CT∗
sym or CT2,(x,x′) ̸= CT∗

2,(x∗,x′∗). Intu-
itively, the probability that a valid ciphertext is rejected—i.e., the probability that
a valid ciphertext satisfies any of these conditions—is negligible due to the random-
prefix collision resistance of the hash RPC and the authenticity of the symmetric
encryption scheme SE = (EncK,DecK).

Alternative pathways. As mentioned, we focus on achieving CCA-security as ef-
ficiently and as generically as possible. Although the two proposed transformations
for the two steps are applicable to large classes of existing PE schemes, they do not
apply to all PE schemes. For example, post-quantum schemes [AFV11, ABV+12,
Boy13, GVW13] are not covered by our predicate-extension transformation, and not
all schemes may be decomposable and therefore qualify for our second-step transfor-
mation. To make our second step more generic, one could also use the BK-approach
[BK05], which does not require the extended-predicate scheme to have ciphertexts
with a certain structure2. However, it does provide more storage overhead and re-
lies on more primitives (i.e., two independent hash functions, a MAC and a PRG).
The latter may be undesirable in practice, e.g., because no suitable implementations
are available of all primitives. In this regard, our second-step transformation could
provide an effective solution, as it requires only one hash function. Importantly,
because the second step can be done entirely generically, the effort of achieving CCA-
security is reduced to finding an efficient predicate extension. Note that several such
predicate-extension techniques have been described implicitly, e.g., the CHK- and
YAHK-approaches extend the (H)IBE with another level in the hierarchy and extend
the ABE ciphertext predicate with a conjunction or disjunction, respectively. Further-
more, for schemes for which there is no such predicate-extension technique available
(that is sufficiently efficient), we only need to devise an efficient predicate-extension
transformation, instead of performing a full-fledged CCA-security conversion.

9.1.2 Performance analysis and comparison
We compare the efficiency of our CCA-transformation with the others. From a theo-
retical standpoint, ours is the most efficient. It incurs only a small constant overhead
in all algorithms and the key and ciphertext sizes in the first step, regardless of the
size of the predicate. For all other transformations, this is not the case. Especially

2The security proof of the generalized variant of the BK-transformation is analogous to that of
the BK-transformation itself.
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for schemes with linear-sized predicates, such as ABE, this provides a significant effi-
ciency improvement. In contrast, the other approaches applicable to ABE incur the
following efficiency trade-offs:

• FO [FO99, HHK17]: in general, this approach incurs little to no overhead to
most algorithms, except for the decryption algorithm, which requires an invo-
cation of the encryption algorithm, whose costs are often linear;

• YAHK-del [YAHK11]: depending on the type of ABE, this transformation for
delegatable schemes might either be very efficient or very costly. For KP-ABE,
the transformation incurs only a small constant overhead in all algorithms and
the key and ciphertext sizes. For CP-ABE, the transformation incurs an addi-
tional overhead that is linear in the security parameter in the encryption and
decryption algorithms;

• YAHK-ver [YAHK11], BL [BL16]: these transformations for verifiable schemes
incur little to no overhead in most of the algorithms and the key and cipher-
text sizes, except for the decryption algorithm, which also verifies whether the
ciphertexts are well-formed. The costs incurred by the verification step are
similar to the decryption costs of the CPA-secure PE scheme, and therefore
roughly double the decryption costs of the CCA-secure PE scheme (which are
often linear in the predicate size);

• KW [KW19a]: this fully-generic transformation is very costly and incurs an
overhead in all algorithms and sizes that is linear in the security parameter.

In Section 9.4, we analyze the performance of RW13 to show the advantage of our
transformation compared to existing transformations. In particular, we analyze the
costs of the CCA-secure variants of the fully secure version of RW13 [RW13] in the
pair encodings framework, i.e., RWAC (Definition 4.4). We compare our CCA-variant
with those that follow from applying FO and the transformations for delegatable and
verifiable CP-ABE. Our analysis shows that our transformation has a much faster
decryption than all existing transformations, while incurring a marginal overhead in
the other algorithms compared to the fastest variants.

9.1.3 Organization
This chapter is structured as follows. We first give, in Section 9.2, the fully generic
transformations from any CPA-secure PE ΓPE,IND-CPA,P ′ for extended predicate P ′

into a CCA-secure PE ΓPE,IND-CCA,P for original predicate P , i.e., steps 2 and 3. After
this, in Section 9.3, we propose novel generic transformations from any CPA-secure
PE ΓPE,IND-CPA,P for predicate P to a CPA-secure PE ΓPE,IND-CPA,P ′ for extended
predicate P ′, i.e., step 1. We first give the more general steps of the transformation
and then the less generic step, due to the “level of genericness”. Finally, we compare
the performance of our transformation in Section 9.4, and conclude the chapter in
Sections 9.5 and 9.6 by discussing future directions.
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9.2 Our generic CCA-transformation
We introduce our generic transformation for CCA-secure PE.

9.2.1 Step one: extending the predicate
Let ΓPE,IND-CPA,P = (Setup,KeyGen,Encrypt,Decrypt) be a predicate encryption
scheme for the predicate P : X × Y → {0, 1}. In the first step of our approach, we
transform it into a scheme ΓPE,IND-CPA,P ′ for predicate P ′ = CCA[P ], where CCA[P ]
denotes the predicate extension required by the CCA-transformation on predicate P ,
i.e., P ′ : X ′ × Y ′ → {0, 1}, where

• X ′ = X × Z and Y ′ = Y × (Z ∪ {∗}), where |Z| ≥ 22λ;

• P ′((x, x′), (y, y′)) = 1 if and only if

– P (x, y) = 1 and y′ = ∗;
– or P (x, y) = 1 and x′ = y′.

In Section 9.3, we give several predicate-extension transformations that generically
transform a CPA-secure PE scheme for the predicate P in a CPA-secure PE scheme
for predicate CCA[P ]. Conceptually, we do this by making an AND-composition of
the original PE scheme for predicate P with an “all-or-one-identity” IBE. In an “all-
or-one-identity” IBE, a user is given either a key for one particular identity y′ ∈ Z
or all identities y′ = ∗. These transformations are not fully generic, because they
only apply to pairing-based ABE. In particular, they are given in the pair encodings
framework (Chapter 4).

We note that a scheme with an extended predicate can also be obtained in other
ways. For instance, the approaches used for (H)IBE [CHK04, BK05, BCHK07] also
apply. Additionally, the generic transformations using delegation by Yamada et al.
[YAHK11] yield suitable candidates as well, but only for KP-ABE and CP-ABE. Fur-
thermore, the transformation by Tomida et al. [TKN21] using delegation is similar
to our proposed constructions in Section 9.3, but these only work for their specific
KP-ABE and CP-ABE schemes, and are not generic in the sense that they can be
applied to any PE. Additionally, while our transformations in Section 9.3 are specific
to pairing-based PE, they may also work for PE based on other cryptographic as-
sumptions, for instance, by creating an “all-or-one-identity” IBE from a suitable IBE
from post-quantum assumptions [GPV08], and taking an AND-composition with any
post-quantum PE [AFV11, ABV+12, Boy13, GVW13].
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9.2.2 Step two: generic CCA-secure construction
Much like in [KV08] and [ACIK10], the predicate extension is generated from part
of the ciphertext. To this end, we introduce the notion of “decomposable extended-
predicate encryption (EPE)”, which we use as input to the CCA-security transforma-
tion. In decomposable EPE, we decompose the ciphertext in three parts, such that
one of the parts is used to generate the predicate extension with the hash.

Definition 9.1: Decomposable EPE

An EPE scheme with encryption algorithm Encrypt is called decomposable if the
ciphertexts are decomposable. The ciphertexts are decomposable if CT(x,x′) ←
Encrypt(MPK, (x, x′),M) can be decomposed as follows:

CT(x,x′) = (CTM,CT1,CT2,(x,x′)), such that

• only CT2,(x,x′) depends on (x, x′);

• only CTM contains the message;

• CTM is uniquely determined by M , MPK and CT1, and conversely, CT1

is uniquely determined by M , MPK and CTM;

• CT1 ∈ G is generated independently of CT2,(x,x′);

• for any (x̂, x̂′) ∈ X ′ with x̂′ ̸= x′, we have that any CT2,(x̂,x̂′) that is valid
for CT1 is such that CT2,(x̂,x̂′) ̸= CT2,(x,x′);

• CT1 is generated uniformly at random over G, such that Pr[CT1 = CT′
1 |

CT′
1 ∈R G] ≤ negl(λ).

In this case, we also define two algorithms for encryption, i.e.,

• Encrypt1(MPK,M)→ (CTM,CT1);

• Encrypt2(MPK, (x, x′))→ CT2,(x,x′),

such that

Encrypt(MPK, (x, x′),M) = (Encrypt1(MPK,M),Encrypt2(MPK, (x, x′))).

Decomposable EP-KEM. This definition also naturally extends to the key-encap-
sulation variants of EPE, i.e., by replacing CTM by the encapsulated symmetric
key. We can generically obtain a EP-KEM from a EPE by encrypting a randomly-
generated symmetric key K. For PE schemes with a certain algebraic structure, we
can also generically obtain a more efficient KEM.
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More efficient transformation from PE to P-KEM. Let ΓPE = (Setup,KeyGen,
Encrypt,Decrypt) be a decomposable predicate encryption scheme for the predicate
P : X × Y → {0, 1}. Suppose that the operation on the group in which CTM lives
is multiplicative3 and its operator is ·, and in particular, that CTM = M · rand,
where rand is some random element in the group in which CTM lives. Let id denote
the identity in this group. Then, we can generically define Encaps and Decaps from
Encrypt and Decrypt as follows.

- Encaps(MPK, x): Let (CTM,CT1,CT2,x) ← Encrypt(MPK, x, id). Then, this
algorithm outputs K = CTM as the symmetric key and (CT1,CT2,x) as the rest
of the ciphertext.

- Decaps(MPK,SKy,CTx): This algorithm outputs the decapsulated symmetric
key as K′ ← Decrypt(MPK,SKy, (id,CT1,CT2,x))

−1.

The correctness of the P-KEM follows from the correctness of the PE:

Decaps(MPK,SKy,CTx) = Decrypt(MPK,SKy, (id,CT1,CT2,x))
−1

= K ·Decrypt(MPK,SKy, (id ·K,CT1,CT2,x))
−1

= K ·Decrypt(MPK,SKy,Encrypt(MPK, x, id))−1 = K · id−1 = K.

The CPA-security of the P-KEM also follows readily from the PE. Let AP-KEM

be an attacker on the P-KEM, i.e., which can distinguish for a given (K,CT1,CT2,x)
whether K is a symmetric key or K is random. Then, it can be used to construct
an attacker APE for the PE scheme. Suppose (CTM,CT1,CT2,x) is the challenge
ciphertext for M0 or M1. Then, pick β ∈R {0, 1} and send (K = CTM/Mβ ,CT1,
CT2,x) to attacker AP-KEM. If it outputs that K is a symmetric key, then attacker
APE outputs β as the guess, and otherwise, it outputs 1 − β as the guess. The
advantage of AP-KEM is equal to the advantage of APE.

9.2.3 Generic CCA-secure construction
We use a CPA-secure decomposable EP-KEM with an extended predicate to generi-
cally construct a CCA-secure hybrid PE for the original predicate.

Construction 9.1: Generic CCA-secure construction

Let ΓPE = (Setup,KeyGen,Encaps,Decaps) be a predicate key-encapsulation
mechanism for the predicate P : X × Y → {0, 1}, and suppose ΓEP-KEM =
(SetupEP-KEM,KeyGenEP-KEM,EncapsEP-KEM,DecapsEP-KEM) is a decompos-
able extended-predicate KEM for predicate P ′ = CCA[P ] (e.g., obtained with a
predicate-extension transformation (Section 9.3)). Let SE = (EncK,DecK) be an

3Something similar works for additive groups as well.
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authenticated symmetric encryption scheme with key space Kλ equal to the space
in which CTM lives, and RPC: {0, 1}λ × G → Z be a random-prefix collision-
resistant hash function. Then, we define Γ′

PE = (Setup′,KeyGen′,Encrypt′,
Decrypt′) to be the CCA-secure hybrid encryption version of scheme ΓPE for
predicate P as

- Setup′PE(λ, par): On input λ and par, the setup generates (MPK,MSK)←
SetupEP-KEM(λ, par), and sets MPK′ = MPK and MSK′ = MSK.

- KeyGen′PE(MSK′, y): On input the master secret key MSK′ and some
y ∈ Y, it returns SK′

y ← KeyGenEP-KEM(MSK, (y, ∗)).

- Encrypt′PE(MPK′, x,M): On input the master public key MPK′, x ∈ X
and message M ∈ {0, 1}∗, the encrypting user computes (K,CT1) ←
Encaps1,EP-KEM(MPK), picks k ∈R {0, 1}λ and sets x′ = RPC(k,CT1),
then generates CT2,(x,x′) ← Encaps2,EP-KEM(MPK, (x, x′)), and com-
putes† CTsym ← EncK(M∥CT2,(x,x′)), and returns

CT′
x = (CTsym,CT1,CT2,(x,x′), k).

- Decrypt′PE(MPK′,SK′
y,CT

′
x): On input the master public key MPK′, the

secret key SK′
y, and the ciphertext CT′

x = (CTsym,CT1,CT2,(x,x′), k), if
P (x, y) = 1, then the decrypting user computes x′ = RPC(k,CT1) and

K′ ← DecapsEP-KEM(MPK,SK(y,∗), (CT1,CT2,(x,x′))).

The user computes (M ′∥CT′
2,(x,x′)) ← DecK′(CTsym), and if CT′

2,(x,x′) =
CT2,(x,x′), returns M ′.

†If one uses an authenticated encryption scheme with associated data [Rog02], one can also
treat CT2,(x,x′) as associated data, as it does not need to be secret.

Correctness. The scheme is correct, i.e., if P (x, y) = 1, then M ′ = M , because
the correctness of the P-KEM ensures that K = K′, and thus, (M ′∥CT′

2,(x,x′)) =
DecK′(CTsym) = DecK(CTsym) = DecK(EncK(M∥CT2,(x,x′))) = (M∥CT2,(x,x′)).

Security. We prove the following theorem.
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Theorem 9.1

In Definition 9.1, if ΓEP-KEM is a decomposable CPA-secure P-KEM for the ex-
tended predicate CCA[P ], RPC is a random-prefix collision-resistant hash func-
tion and SE = (EncK,DecK) is an authenticated encryption scheme, such that
the RPC is independent of ΓEP-KEM and SE, then Γ′

PE is CCA-secure.

Proof. We prove this theorem in a series of games in which we start with the real
CCA-security game: Game 0. Let CT∗

x∗ = (CT∗
sym,CT

∗
1,CT

∗
2,(x∗,x′∗), k

∗) denote the
challenge ciphertext (with K∗ being the symmetric key) for the challenge predicate
x∗ and message Mβ . Let q be the number of decryption queries, and let Xi denote
the event that attacker ACCA is successful in Game i.

Game 1: In this game, everything is the same as in Game 0, except that, in the first
query phase, all decryption queries with CT1 = CT∗

1 are rejected. Additionally, in
both query phases, the decryption queries with (CT1, k) ̸= (CT∗

1, k
∗) and x′ = x′∗

are rejected. The probability that CT1 = CT∗
1 holds for any honestly generated

ciphertext is 1
G . Furthermore, the probability that any x′ for (CT1, k) ̸= (CT∗

1, k
∗)

is such that RPC(k,CT1) = x′ = x′∗ = RPC(k∗,CT∗
1) is equal to Pr[(CT1, k) ̸=

(CT∗
1, k

∗) ∧ RPC(k,CT1) = RPC(k∗,CT∗
1)] = AdvRPC. Hence, we have

|Pr[X0]− Pr[X1]| ≤
q

G
+ AdvRPC.

Game 2: In this game, everything is the same as in Game 1, except that, in the
second query phase, all decryption queries are rejected where CTsym ̸= CT∗

sym holds,
and the key K ← DecapsEP-KEM(MPK,SK(y,∗),CTx) is such that K = K∗. Because
this property can only hold if the ciphertext authenticity of the SE is broken, we have

|Pr[X1]− Pr[X2]| ≤ AdvSE,CAUT.

Game 3: In this game, everything is the same as in Game 2, except that, in the second
query phase, all valid decryption queries are rejected where CT2,(x,x′) ̸= CT∗

2,(x∗,x′∗)

holds, and K = K∗ (and thus, CT1 = CT∗
1). Note that this can happen only if the

ciphertext authenticity of SE is broken, because the attacker has to generate a valid
ciphertext for the same key K∗ and another message. Hence, we have

|Pr[X2]− Pr[X3]| ≤ AdvSE,CAUT.

Game 4: At this point, all ciphertexts that are queried in the second phase and that
are not rejected are such that, for the keys, it holds that K ̸= K∗. This follows
from the fact that K is uniquely determined by MPK and CT1 (and vice versa), and
thus, if K = K∗, then CT1 = CT∗

1. By extension, we have (CTsym,CT2,(x,x′), k) ̸=
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(CT∗
sym,CT

∗
2,(x∗,x′∗), k

∗). (Note that, if k ̸= k∗, we also have CT2,(x,x′) ̸= CT∗
2,(x∗,x′∗),

which follows from rejecting all ciphertexts with x′ = x′∗ in Game 1. From the fact
that the EP-KEM is decomposable, it follows that x′ ̸= x′∗ implies CT2,(x,x′) ̸=
CT∗

2,(x∗,x′∗).) For these cases, we had rejected the decryption queries (in Games 2
and 3). Because this game is the same as Game 3, we have

|Pr[X3]− Pr[X4]| = 0.

Game 5: In this game, everything is the same as in Game 4, except that we gen-
erate the challenge ciphertext as follows. Let ORPC denote the oracle that finds
k ∈ {0, 1}λ such that RPC(k, g) = z for any given (g, z) ∈ G × Z. Because RPC
is independent of the P-KEM and symmetric encryption scheme, this does not give
the attacker any advantage. Then, the challenger generates (K∗,CT1,CT2,(x∗,x′∗))←
EncapsEP-KEM(MPK, (x∗, x′∗)) for the challenge predicate x∗ and randomly chosen
x′∗, and queries the oracle ORPC with (CT1, x

′∗), which returns k∗ if it exists. (Oth-
erwise, it repeats the process of generating new ciphertexts until the oracle pro-
vides some output k∗. This likely succeeds because of the random-prefix collision
resistance of the RPC. Intuitively, if many such inputs exist for which the oracle
does not return a output, we can also find many g such that there exist at least
two k, k′ with RPC(k, g) = RPC(k′, g), which breaks the random-prefix collision
resistance of the RPC.) The challenger then outputs the challenge ciphertext as
(K̂∗,CT1,CT2,(x∗,x′∗), k

∗), where K̂∗ is a randomly chosen key that replaces K∗. Be-
cause the attacker cannot make decryption queries for K∗, it can only distinguish this
game from Game 4 by breaking the CPA-security of the EP-KEM. Therefore, we have

|Pr[X4]− Pr[X5]| ≤ AdvEP-KEM,IND-CPA.

Game 6: In this game, everything is the same as in Game 5, except we replace the
challenge message by a randomly generated message of the same length as Mβ . By
the ciphertext indistinguishability of the symmetric encryption scheme, no attacker
can distinguish Game 5 from Game 6, i.e.,

|Pr[X5]− Pr[X6]| ≤ AdvSE,CIND.

Summary: In this final game, because the ciphertext decrypts to a random message,
the success probability of the attacker is 1

2 , i.e., Pr[X6] = 1
2 . This gives us the

following upper bound on the advantage of the attacker in the real security game:

AdvPE,IND-CCA =

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣
≤ q

G
+ AdvRPC + 2AdvSE,CAUT + AdvEP-KEM,IND-CPA + AdvSE,CIND.

Since all advantages on the right-hand side are negligible in λ, it also holds that
AdvPE,IND-CCA is negligible in λ. ⊓⊔
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Remark 9.1

Our proof techniques are similar to the ACIK techniques. In fact, by feeding
CT2,(x,x′) through the authenticated symmetric encryption scheme, a part of
the proof is more similar to the BK-approach. However, unlike BK, we use the
same key K to encrypt and authenticate the message M , and to authenticate
CT2,(x,x′). To ensure that this can be done securely, we require MPK, M , CTM

and CT1 to be highly dependent on one another. This property is arguably easier
to verify than ACIK’s rejection property. Furthermore, we explicitly require
CT1 to be sufficiently random (which is a requirement that is inspired by the
KV scheme [KV08]). Lastly, note that our property that, for any (x̂, x̂′) ∈ X ′

with x̂′ ̸= x′, we have that any CT2,(x̂,x̂′) that is valid for CT1 is such that
CT2,(x̂,x̂′) ̸= CT2,(x,x′), is similar to ACIK’s unique-split property.

9.2.4 Variation with non-decomposable EP-KEM
To convert extended-predicate schemes that do not have decomposable ciphertexts,
we can also base our second step of the transformation on a more generic conversion
technique than ACIK [ACIK10], such as CHK [CHK04] or BK [BK05]. To apply
those techniques, we can treat the extended predicate (x′, y′) similarly as the identity
in those transformations. For example, as in the CHK-transformation, we can embed
the verification key in the ciphertext’s extended predicate x′, and sign the resulting
ciphertext with the associated signing key of the one-time signature scheme. Recall,
however, that both these methods provide trade-offs in various practical aspects.
That is, OTSs provide a significant efficiency trade-off, and the BK-approach induces
a higher storage overhead and relies on more primitives.

9.3 New predicate-extension transformations
We give a high-level description of a concrete predicate-extension transformation
(for which we provide a formal description in the appendix) for pairing-based ABE.
Roughly, this transformation and its security proof follow a similar approach as Attra-
padung [Att19]. In particular, we take as input a secure PE scheme (satisfying some
properties) and perform a predicate transformation on it, i.e., an AND-composition
(on the key) of the original scheme and an “all-or-one-identity” IBE scheme. To this
end, we adapt the key-policy augmentation transformation of Attrapadung [Att19].
Our adaptation differs from the original in two ways. First, we ensure that, for the
extended key predicate (y, ∗), we can generate a key for all identities (y, y′). Second,
we re-use the randomness used in the keys of the original scheme to randomize the
partial “all-or-one-identity” key. In this way, we minimize the amount of randomness,
and ultimately, the computational costs.
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9.3.1 “All-or-one-identity” IBE
For the predicate extension, we use an “all-or-one-identity” IBE scheme. On a high
level, we define the “all-or-one-identity” IBE scheme with identities x′, y′ ∈ Zp = Z
as follows:

MPK′ = (g, h, e(g, h)αs, gb
′
0 , gb

′
1),

SK′
y′ = (hα+r(b′0+y′b′1), hr),SK′

∗ = (hα+rb′0 , hrb′1 , hr),

CT′
x′ = (M · e(g, h)αs, gs(b

′
0+x′b′1), gs).

With SK′
∗, we can generate SK′

y′ for any y′ ∈ Zp, by computing:

hα+rb′0 ·
(
hrb′1

)y′

= hα+r(b′0+y′b′1).

Note that this scheme is similar to the Boneh-Boyen IBE1 scheme [BB04], which is
selectively secure, with the modification that it allows for the generation of a secret
key that can be used for all identities.

9.3.2 AND-composition with a PE
The transformation of a PE for predicate P to the PE with extended predicate
CCA[P ] consists of an AND-composition with the “all-or-one-identity” IBE. For ex-
ample, consider the following scheme:

MPK = (g, h, e(g, h)αs, gb),

SKy = (hr, hk(α,r,b,y)),

CTx = (M · e(g, h)αs, gs, gc(s,b,x)),

where r, k, s, and c denote the vectors that describe the secret key and ciphertext,
respectively. Then, the transformed scheme is of the form:

MPK = (g, h, e(g, h)αs, gb, gb
′
0 , gb

′
1),

SK(y,y′) =

{
(hr, hk(α1,r,b,y), hα−α1+rb′0 , hrb′1) if y′ = ∗;
(hr, hk(α1,r,b,y), hα−α1+r(b′0+y′b′1)) if y′ ∈ Zp,

CT(x,x′) = (M · e(g, h)αs, gs, gc(s,b,x), gs(b
′
0+x′b′1)),

where α1 ∈R Zp. We formulate this transformation in the pair encodings framework
in Section 9.3.4. We prove security of the transformation in several ways. We show
that the transformation for pair encodings preserves the symbolic property.
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9.3.3 Decomposability of the ciphertexts
The resulting extended-predicate encryption scheme is decomposable (and even spe-
cial decomposable):

CT(x,x′) = (M · e(g, h)αs︸ ︷︷ ︸
CTM

, gs︸︷︷︸
CT1

, gc(s,b,x)︸ ︷︷ ︸
CT2,x

, gs(b
′
0+x′b′1)︸ ︷︷ ︸

CT3,x′

),

and can be easily transformed in a KEM by removing CTM and setting K = e(g, h)αs.
For a fixed master public key MPK, the key K is then uniquely defined by CT1 and
vice versa, and CT1 is generated uniformly at random. For x̂′ ̸= x′, we have that
gs(b

′
0+x̂′b′1) ̸= gs(b

′
0+x′b′1). We can also define a different split, e.g., CT1 = gs and

push the rest of gs in CT2,x. Note that, if one chooses to encapsulate some randomly
generated symmetric key K = M , then M · e(g, h)αs should be included in CT1 to
ensure that K is uniquely defined by CT1 and MPK.

9.3.4 Predicate-extension transformation for pair encodings
We define the predicate-extension transformation for pair encodings as follows.

Construction 9.2: PredEx-Trans for PES

Let Γ be a PES for predicate P . Then, we construct a PES for CCA[P ] as
follows:

- Param′(par) = Param(par)+2: The common variables are b′ = (b, b′0, b
′
1),

where b are the common variables of Γ.

- EncKey′((y, y′), p): Let y ∈ Y and y′ ∈ Zp ∪ {∗}, and generate α1 ∈R Zp,
and set α2 = α−α1. Then, compute k(1)(α, r(1), r̂(1),b, y)← EncKey(y, p),
and replace each occurrence of α by α1, yielding k(2)(α1, r

(1), r̂(1),b, y).
Additionally, compute

k(3)(α2, r
(1), r̂(1),b′, y′) =

{
(α2 + r1(b

′
0 + y′b′1)), if y′ ∈ Zp;

(α2 + r1b
′
0, r1b

′
1)), if y′ = ∗.

Output k(α, r, r̂,b′, (y, y′)) = (k(2),k(3)), where r = r(1), and r̂ = (α1, r̂
(1)).

- EncCt′((x, x′), p): Let x ∈ X and x′ ∈ Zp. Compute c′ = c′(s, ŝ,b, x) ←
EncCt(x, p). Output c(s, ŝ,b′, (x, x′))← (c′, s(b′0 + x′b′1)).

Pair/Correctness. Let (x, x′) ∈ X ′ and (y, y′) ∈ Y ′ be such that P ′((x, x′), (y, y′)) =
1. In particular, we have P (x, y) = 1 and either y′ = ∗ or x′ = y′. Let (E′, Ē′) ←
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Pair(x, y, p), such that sE′(k′
1)

⊺ + c′Ē′r⊺ = α1s. If y′ = ∗, we recover

α2s = s

(
1 x′

0⊺ 0⊺

)
k⊺
2 + (s(b′0 + x′b′1))

(
1 0

)
r⊺.

If y′ ∈ Zp, we recover

α2s = s

(
1
0⊺

)
k⊺
2 + (s(b′0 + x′b′1))

(
1 0

)
r⊺.

Finally, we recover αs = α1s + α2s. Note that the output of Pair′((x, x′), (y, y′)) is
(E, Ē), where

E =


(
E′,

(
1 x′

0⊺ 0⊺

))
if y′ = ∗;(

E′,

(
1
0⊺

))
if y′ ∈ Zp,

Ē =

(
Ē′(

1 0
)) .

9.3.5 The PES-transformation preserves Sym-Prop
We show that the predicate-extension transformation preserves the symbolic property
(Definition 4.2).

Theorem 9.2

Suppose that Γ satisfies (d1, d2)-Sym-Prop+. Then, Γ′ = PredEx-Trans(Γ) for
CCA[P ] satisfies (2d1, d2 + 1)-Sym-Prop+.

Proof. We define the partial predicate P̄ such that P̄ (x′, y′) = 1 if and only if x′ = y′

or y′ = ∗. Suppose that (x, x′) ∈ X ′ and (y, y′) ∈ Y ′ are such that P ′((x, x′), (y, y′)) =
0. This means that P (x, y) = 0 or x′ ̸= y′ (with y′ ∈ Zp) holds (or both). In particular,
let EncB, EncR, and EncS output matrix/vector substitutions for the variables α, b,
r, r̂, s = (s, s1, ...) and ŝ, i.e., a,B(1), r(1), r̂(1), s(1), and ŝ(1) (which are vectors of
matrices/vectors). For these substitutions, it holds that, if P (x, y) = 0, then the
polynomials in the encodings evaluate to 0.

• The selective symbolic property: First, we show that the selective symbolic
property holds. We use the substitutions of Γ for the selective symbolic property
to substitute the variables and polynomials of Γ′ as follows:

bi :
(
B

(1)
i 0

)
, b′0 : −x′11,d2+1, b′1 : 11,d2+1,



224 Chapter 9. Efficient and generic transformations for CCA-secure PE

r1 :


(

βr
(1)
1

β′(1−β)
x′−y′

)
if y′ ∈ Zp;(

βr
(1)
1

0

)
if y = ∗,

ri′ :

(
βr

(1)
i′

0

)
, r̂i(2) : βr̂

(1)

i(2)
,

α : a, α1 :

(
β
0

)
, s : s

(1)
0 , sj : s

(1)
j , ŝj′ : (s

(1)
j′ , 0),

for all i ∈ [n], i′ ∈ [2,m1], i
(2) ∈ [m2], j ∈ [0, w1], j

′ ∈ [w2], where β = 1−P (x, y)

and β′ = 1 − P̄ (x′, y′). Note that β′(1−β)
x′−y′ is well-defined, because if y′ = x′,

then β′ = 0.

• The co-selective property: We also show that the co-selective property holds.
We use the substitutions of Γ for the co-selective symbolic property to substitute
the variables and polynomials of Γ′ as follows:

b′0 :

{
1
2d1×(d2+1)
d1+1,d2+1 + y′1

2d1×(d2+1)
d1+2,d2+1 − 1

2d1×(d2+1)
1,d2+1 − y′1

2d1×(d2+1)
2,d2+1 if y′ ∈ Zp;

1
2d1×(d2+1)
d1+1,d2+1 − 1

2d1×(d2+1)
1,d2+1 if y′ = ∗,

b′1 :

{
1
2d1×(d2+1)
2,d2+1 − 1

2d1×(d2+1)
d1+2,d2+1 if y′ ∈ Zp;

02d1×(d2+1) if y′ = ∗,
, bi :

(
0d1×d2 0d1×1

B
(1)
i 0d1×1

)
,

r1 :

(
r
(1)
1

1

)
, ri′ :

(
r
(1)
i′

0

)
, r̂i(2) :

(
0d1×1r̂

(1)

i(2)

)
, α : a,

α1 : 12d1

d1+1, s : β
(
s
(1)
0 s

(1)
0

)
+ β′ (1 1

x′−y′ 02d1−2
)
,

sj :
(
s
(1)
j 0d1

)
, ŝj′ :

(
s
(1)
j′ 0

)
,

for all i ∈ [n], i′ ∈ [2,m1], i
(2) ∈ [m2], j ∈ [0, w1], j

′ ∈ [w2], where β = 1−P (x, y),
and β′ = 1− P̄ (x′, y′). Here, we assume that d1 ≥ 2.

Thus, Sym-Prop+ holds for Γ′. ⊓⊔

9.3.6 Example: predicate-extended version of RW13
As an example, we apply the transformation to RW13 (Construction 4.2).

Construction 9.3: The predicate-extended version of [RW13]

The predicate-extended version of RW13, obtained by applying Construction 9.2
to the PES of RW13 (Construction 4.2) is defined as follows:

- Param(∅): Set n = 6 and b = (b, b′, b0, b1, b
′
0, b

′
1).
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- EncKey((S, y′), p): On input set of attributes S and integer y′ ∈ Zp ∪ {∗},
this algorithm generates α1 ∈R Zp, sets α2 = α − α1, and outputs k =
(k0 = α1 + rb, {k1,att = rb′ + ratt(b0 + xattb1)}att∈S ,k

′
2), where xatt ∈ Zp

is the integer representation of att and

k′
2 =

{
(α2 + r(b′0 + y′b′1)), if y′ ∈ Zp

(α2 + rb′0, rb
′
1)), if y′ = ∗ ,

defined over non-lone variables r = (r, {ratt}att∈S) and lone variable r̂ =
(α1). Note that m1 = |S|+ 1 and m2 = 1.

- EncCt((A, x′), p): On input access policy A = (A, ρ) and integer x′ ∈ Zp,
this algorithm outputs c = ({c1,j = λj+sjb

′, c2,j = sj(b0+xρ(j)b1)}j∈[n1], c3 =
s(b0 + x′b1)), where λj = Aj,1sb+

∑
k∈[2,n2]

Aj,kvk, defined over non-lone
variables s = (s, {sj}j∈[n1]) and lone variables ŝ = ({vk}k∈[2,n2]). Note
that w1 = n1 and w2 = n2 − 1.

- Pair((A, x′), (S, y′), p): On input policy A, integer x′ ∈ Zp, set of at-
tributes S and integer y′ ∈ Zp ∪ {∗}, if A |= S and x′ = y′ or
y′ = ∗, then this algorithm determines Υ = {j ∈ [n1] | ρ(j) ∈ S}
and {εj ∈ Zp}j∈Υ such that

∑
j∈Υ εjλj = sb (Definition 2.5), and

outputs two matrices E = 1
(w1+1)×m3

0,0 +
∑

j∈Υ εj1
(w1+1)×m3

j,ρ(j) + E′′ and

E = −
∑

j∈Υ εj

(
1w3×m1

(1,j),0 + 1w3×m1

(2,j),ρ(j)

)
+ 1w3×m1

w3,0
, where

E′′ =

{
1
(w1+1)×m3

0,m3−1 + x′1
(w1+1)×m3

0,m3
, if y′ ∈ Zp

1
(w1+1)×m3

0,m3
, if y′ = ∗.

It follows directly from Lemma 4.4 and Theorem 9.2 that the PES is secure.

Corollary 9.1

The PES in Construction 9.3 is symbolically secure. Thus, any scheme obtained
with our generic compiler (Definition 4.10) is selectively secure, and any scheme
obtained with the AC17 generic compiler (Section 4.4) is fully secure.

9.4 Performance analysis of concrete constructions
To illustrate the benefits of our transformation with respect to the efficiency compared
to other generic transformation techniques, we analyze the storage and computational
costs of the CCA-secure variants of RW13. Specifically, we benchmark the P-KEM
part of these variants. (We leave out the KW [KW19a] transformation due to its
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evident blowup in costs as shown in Section 9.1.2.) We approximate the efficiency
of the FO, delegation and verifiability-based transformations. For FO, we add the
encryption costs to the decryption costs (for same-length inputs). Note that this
also includes the public key storage cost in the secret key size as this is required
for re-encryption. For verifiability-based transformations, we add one attribute in
the ciphertext-policy input, and multiply the decryption costs by a factor 2. For
delegation-based transformations, we assume that the length of the verification key
of the used OTS is at least 128 bits (at the 128-bit security level), and thus, that the
key set is extended with 2 · 128 = 256 attributes, and the ciphertext policy with 128
attributes. We have implemented the schemes in Rust4 using the BLS12-381 crate
provided by the zkCrypto group [ZkC20].

Table 9.2 summarizes the benchmarks obtained by running the code on an AMD
Ryzen 7 3700X CPU, with a frequency of 4.1 GHz. We observe that our ciphertexts
are generally smaller, while the keys are only a little larger. We also observe that
our decryption is by far the most efficient, i.e., at least a factor 2 than all other
variants. Furthermore, the key generation and encryption costs are only milliseconds
slower than the most efficient variants. In conclusion, all transformations except
for ours incur a significant trade-off: either attaining a large overhead in the key or
ciphertext sizes, or incurring a very large overhead in at least one of the algorithms. In
contrast, with respect to the decryption algorithm, our transformation outperforms all
other transformations, with incredibly little sacrifice in key generation and encryption
efficiency.

9.5 Future work
Throughout this chapter, we have mentioned several interesting directions for future
work. Because the second step of the transformation can be done fully generically, it
may be used to convert (decomposable) post-quantum PE as well, e.g., by making an
AND-composition of a post-quantum PE and “all-or-one-identity” IBE. Finally, while
this chapter is general for all PE, it might be applicable to an even larger class of
encryption schemes, e.g., functional encryption [BSW11], which contains PE.

9.6 Conclusion
We have presented a new two-step approach to achieving CCA-security generically in
PE schemes, which aims to convert PE schemes as efficiently as possible. Additionally,
for each of these steps, we have proposed a new transformation. For the second-step
transformation, we have generalized the ACIK-transform [ACIK10], which can now
be applied to any PE scheme that is decomposable and for which the predicate can be
securely extended. Compared to the more generic CHK- and BK-approaches, ACIK

4The code is available at https://github.com/leonbotros/pe_cca.

https://github.com/leonbotros/pe_cca
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Table 9.2. Comparison of the storage and computational costs of the P-KEM part of several
CCA-secure variants of the fully secure variant of RW13. The storage costs are expressed
in bytes and the timings are expressed in milliseconds. The lowest costs are typeset in
bold, and for 100 attributes, we also include the increase in costs compared to the lowest
costs. We consider inputs of 1, 10 and 100 attributes. (Note that we use compressed point
representation to minimize the storage costs.)

Variant |MPK| |SKS | |CTA|
1 10 100 Increase 1 10 100 Increase

CPA 768 768 4,224 38,784 - 384 2,976 28,896 -
FO 768 1,536 4,992 39,552 2% 672 3,264 29,184 1%
Del. 768 99,072 102,528 137,088 253% 37,248 39,840 65,760 128%
Ver. 768 768 4,224 38,784 0% 672 3,264 29,184 1%
Ours 960 1,152 4,608 39,168 1% 480 3,072 29,008 0.4%

(a) Storage costs

Variant KeyGen Encrypt Decrypt
1 10 100 Increase 1 10 100 Increase 1 10 100 Increase

CPA 8.40 46.2 424 - 6.73 46.6 445 - 3.84 16.6 145 -
FO 8.40 46.2 424 0.4% 6.73 46.6 445 0% 10.6 63.1 590 307%
Del. 1082 1121 1499 255% 573 614 1013 127% 186 200 329 127%
Ver. 8.37 46.0 422 0% 11.1 51.0 449 0.9% 10.5 35.8 292 101%
Ours 12.5 50.1 427 1% 8.21 48.2 448 0.7% 6.0 18.7 148 2%

(b) Computational costs

provides less storage overhead and relies on fewer primitives. For the first-step trans-
formation, we have proposed a new predicate-extension transformation that can be
applied to any pairing-based schemes that can be captured in the pair and predi-
cate encodings frameworks. Compared to existing (implicitly-described) predicate-
extension techniques, ours is more efficient. Notably, for CP-ABE, existing such
techniques are very inefficient. To show that our predicate-extension transforma-
tion indeed yields interesting improvements on existing ones, we have implemented
RWAC. For all algorithms, our transformation incurs only a small constant overhead
compared to the CPA-secure variant. In contrast, all other transformations incur a
sizable overhead in at least one of the algorithms. In fact, our transformation is at
least twice as fast in the decryption algorithm compared to all other transformations.
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Chapter 10

Conclusions and outlook

10.1 Conclusions
Finally, we would like to conclude this thesis by reflecting on its goal: achieving all
necessary core properties of ABE efficiently to maximize its advantages in practice. As
mentioned in the introduction (Chapter 1), we aim to accomplish this by simplifying
the design of practical schemes. In this way, it is possible to effectively construct
schemes with all necessary properties. As argued in Chapter 4, the pair encodings
framework proves to be a powerful tool in this endeavor, as it allows us to transform
and compose existing schemes to build larger and more complex systems.

As our overview and systematization in Chapter 2 indicated, however, some chal-
lenges remained in the efficient and secure realization of all (necessary) core properties.
In particular, previous techniques to simultaneously support non-monotonicity and
large-universeness lead to schemes with an inefficient decryption. This may be un-
desirable in settings with computationally less powerful decryption devices, such as
the WLAN use case. Similarly, most expressive large-universe schemes have large
ciphertexts or an inefficient encryption. This may be undesirable in IoT settings,
in which the encryption devices are resource constrained. In addition, none of the
previous CCA-conversion techniques incurred only a small constant overhead in all
algorithms for CP-ABE, impacting the efficiency undesirably in general. Our system-
atization also revealed that, although decentralized ABE provides interesting advan-
tages in practice, very few schemes are decentralized. Moreover, as Chapter 5 shows,
many schemes that aim to be decentralized are broken, suggesting that creating such
schemes is significantly more difficult than creating single-authority schemes.

This thesis addresses these issues. First, to enable the fair benchmarking of mul-
tiple schemes, we have set up the ABE Squared framework, which we also use in
the performance analyses of our new schemes. Then, to mitigate the aforementioned
efficiency issues, we have proposed two new schemes: GLUE (Construction 7.1) and
TinyABE (Construction 8.1). These provide flexible efficiency trade-offs, and can be
fine-tuned to take the device constraints into account. Specifically, GLUE can be
fine-tuned to have an efficient decryption, and TinyABE can be fine-tuned to have
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sufficiently small public keys and ciphertexts, as well as a fast encryption. In addi-
tion, we have devised new transformations for CCA-security that incur only a small
constant overhead in all algorithms for CP-ABE. Furthermore, we have designed a
new generic compiler that transforms any pair encoding that satisfies the symbolic
property into a selectively secure scheme. This compiler also supports multi-authority
extensions, and significantly simplifies the design of decentralized schemes. To illus-
trate this, we have proposed two new decentralized schemes that improve on the state
of the art in the efficiency and core properties.

Importantly, because we have proven all of these constructions secure in the pair
encodings framework (using the symbolic property), it is now possible to create
schemes with any of the core properties and a flexible efficiency trade-off feature,
generically. Specifically, GLUE and TinyABE can be considered “basic” schemes,
which satisfy the CP-ABE, expressivity, large-universe and unbounded properties.
(Furthermore, they can readily support an attribute-wise key generation, in a simi-
lar fashion as RW13 (Section 4.7.4).) By applying the transformations in [AC17b],
the key-policy versions of these schemes can be obtained. By applying the transfor-
mations in [Att19, AT20, Amb21], any type of non-monotonicity can be achieved.
To illustrate this, we have provided a variant of GLUE with OSW-type negations
in Construction 7.4. By applying the transformations in [Att19, AT20], a variant
supporting the more desirable OSWOT-negations (Sections 2.5.7 and 3.3.2) can be
obtained. Furthermore, owing to the structure of the polynomial-based BB hash, all
of these schemes can enjoy online/offline extensions that allow the key generation and
encryption to be performed efficiently. To illustrate this, we have provided the on-
line/offline version of GLUE (Construction 7.3). In addition, due to the genericness
of our CCA-transformations, all these schemes can efficiently support CCA-security.
Lastly, an additional desirable feature that the pair encodings framework provides
is the ability to support several revocation measures generically [ABS17, YAE+17],
including those based on using negations [LSW10].

Regrettably, the only property that we considered and that cannot be achieved
generically yet is the (decentralized) multi-authority property. Nevertheless, we have
taken the first steps towards realizing this, by extending the pair encodings framework
to simplify the efficient design of decentralized schemes. Additionally, the similarities
between the selective symbolic property proofs of the PES for AC17 (Construction 4.3)
and our decentralized construction from FDH (Construction 4.5) suggest that it may
be possible to devise a generic transformation that puts any single-authority scheme
in the multi-authority setting. If such a transformation can be devised, we can gener-
ically achieve any desirable (core) property.

10.2 Outlook: towards employing ABE in practice
The main reason why we focus on attaining all necessary properties, efficiently and
generically, is to maximize the advantages of ABE in any practical employments. In
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this section, we reflect upon ETSI’s use cases and to what extent ABE can achieve
the properties required by ETSI. We also discuss two (ongoing) projects to which the
author of this thesis has contributed. In the first project, Portunus, ABE is used to
enforce access control in a large deployed real-world system. In the second project,
PostGuard, predicate encryption is used to manage keys more easily than traditional
public-key encryption allows.

Although we have made progress in attaining all necessary properties (also by
considering the implementation and benchmarking of ABE schemes), much is still
to be done in this endeavor. As the “Directions” and “Future work” sections of each
chapter suggest, improvements can still be made for various theoretical and practical
metrics. For example, the compilers using the symbolic property for its security rely
on q-type assumptions even though static ones are preferred, and the implementations
of GLUE and TinyABE may improve if other curves are used. Nevertheless, if one is
willing to accept such q-type assumptions (and even the selective and static-security
models) for the sake of practicality, much can already be achieved. In fact, our
benchmarks already show that the current state-of-the-art libraries for pairing-based
arithmetic are so efficient that, even for large policies and attribute sets, all algorithms
of the most efficient scheme cost less than a second to execute (on a laptop, using
BLS12-381).

10.2.1 ETSI’s use cases
As mentioned in the introduction, ETSI has recently put efforts in standardizing ABE
for several practical use cases that require the cryptographic enforcement of access
control on data [ETS18a]. In this thesis, we have focused mainly on CP-ABE and
its application as a cryptographic mechanism to enforce ABAC. The relevant use
cases for this type of ABE are the WLAN, IoT1 and cloud use cases. These use
cases share some common goals: they require expressivity (Section 2.3.1), privacy of
user-identifying attributes (Section 2.10.3) and revocation measures (Section 2.10.2).
Furthermore, they need to support the addition of new attributes, which is why we
introduced and discussed the notion of attribute resilience (Section 2.9). Interestingly,
although considered useful, ETSI dismisses the support of negations in ABE due to
their inefficiency. In this thesis, we have explored existing methods to support nega-
tions (Section 2.5.7); considered their effects on the attribute resilience (Section 2.9.2);
and designed GLUE, which is a new ABE scheme that allows for a significant decrease
in decryption costs in non-monotone schemes (Chapter 7).

In line with the main goal of this thesis, to achieve all necessary properties for any
ETSI use case, a suitable “basic” scheme (e.g., AC17-LU, GLUE or TinyABE) can
be chosen, and it can be extended with those additional properties that are needed.
(Note, however, that these schemes can currently not hide the attributes, and thus

1Although ETSI only recommends KP-ABE schemes to be used for the IoT use case, the specified
requirements imply the need for CP-ABE as well.
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cannot preserve the privacy of the identifying attributes (Direction 2.12). Further-
more, as mentioned, the multi-authority property cannot be generically supported,
which is required in, e.g., the WLAN use case.) Our recommendations on how to
choose the most suitable basic scheme can be found below.

10.2.2 Cloudflare’s Portunus
Even more recently, Cloudflare has presented Portunus, which is a large deployed sys-
tem that uses CP-ABE to enforce access control in a distributed setting [LVV+23],
and to which the author of this thesis has contributed. More specifically, Portunus is a
cryptographic storage and access-control system that protects TLS keys. ABE ensures
that customers of Cloudflare can choose, based on their location, which Cloudflare
servers can relay TLS connections between the customer’s websites and visitors of
those websites. For example, the GDPR may require that TLS connections are estab-
lished only with servers located in the European Union. To provide a fast connection
between the website and website’s visitor, it is paramount that only the closest server
that satisfies the customer’s demands relays the TLS connection. If access control is
enforced in a more traditional way, the connection needs to be relayed through a cen-
tralized entity. Therefore, Cloudflare has chosen to use ABE, as it removes the need
for such a centralized entity, and directly allows access control to be enforced on the
ciphertext. To meet their customers’ demands, Cloudflare requires that ABE satisfies
all basic properties and additionally supports OT-type negations. To this end, they
have chosen to use the TKN20 [TKN20] scheme, which is an extended version of the
RW13 [RW13] scheme.

10.2.3 PostGuard
We want to briefly highlight the efforts around the development of the email-encryption
service called PostGuard2 [BSS+22], to which the author of this thesis has also con-
tributed (see, e.g., Chapter 9). PostGuard uses identity-based and attribute-based
primitives to ensure confidentiality and receiver authentication in email systems. By
using attribute-based encryption, it can ensure those properties in a more fine-grained
and user-friendly way than systems based on more traditional public-key encryption,
e.g., OpenPGP3. In such traditional systems, the sender is responsible for locating
and authenticating the recipient’s public key. PostGuard moves this responsibility to
authenticate away from the sender, and towards the recipient. Currently, the service
uses anonymous identity-based encryption [BW06, CGW15] to achieve this, inter-
preting the policies specified by the sender as an identity string [GA07]. The main
drawback of this approach is that, for each unique policy, the decrypting user needs a
new secret key to decrypt. This approach therefore requires more interaction between
the KGA and user than ABE would. The main reason, however, why ABE is not

2PostGuard is available at https://postguard.nl/
3https://www.rfc-editor.org/rfc/rfc4880

https://postguard.nl/
https://www.rfc-editor.org/rfc/rfc4880
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Are the encryption devices
resource constrained?

Is the KGA resource constrained
or does it expect many requests?

TinyABEYes

No

Should encryption and decryption
be fast and is space of no concern?

Are negations required, e.g.,
for expressivity or revocation?

GLUE-OO,
GLUE-N-OO

GLUE-N,
GLUE-N-OO

Yes

AC17-LU

No

Yes
No

No

Figure 10.1. Decision graph for choosing a suitable scheme based on our recommendations.

used (yet) is that no attribute-hiding ABE schemes exist that support large universes
and that are sufficiently expressive (Direction 2.12). In future work, the PostGuard
team will conduct more research on devising such a scheme, and on how it can be
integrated in the service.

Interestingly, to authenticate the recipient, the service uses digital identity wal-
lets. In a broader context, the European Commission has recently prioritized the
development of such wallets for all Europeans [Com]. Digital identity wallets allow
individuals to authenticate themselves digitally by disclosing (some of) their identify-
ing attributes, such as their name or date of birth. Because in many of the ABE use
cases—e.g., email encryption [BSS+22], IoT and cloud [ETS18a] settings—attributes
are used that may be identifying, such wallets are a natural fit for ABE.

10.2.4 Our recommendations for implementing ABE
To help future implementation endeavors, we make four recommendations.

Choosing suitable schemes. Depending on the setting, a different scheme may be
the most suitable. In general, we identify three basic schemes satisfying the CP-ABE,
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expressivity, large-universe and unbounded properties, which could be desirable to em-
ploy: AC17-LU4 (Construction 4.8), GLUE (which also covers RW13) and TinyABE.
These schemes provide various trade-offs in the storage and computational efficiency
and in the properties they can support. Notably, AC17-LU is not known to have ex-
tensions to the non-monotone or online/offline setting. To help practitioners choose
a suitable scheme, we have devised a decision graph (Figure 10.1).

Support for multiple categories of computational devices. As already men-
tioned in Sections 2.7.1 and 7.7, to support various computational devices, multiple
instantiations of GLUE and TinyABE (and even AC17-LU) can be employed simul-
taneously. By applying the parameter reuse transformation of Attrapadung [Att19],
the size of the master public key only depends on the maximum size of the master
public keys of each instantiation and the number of instantiations.

Property minimization. Because each property incurs some additional cost to the
basic scheme, we recommend minimizing the supported properties to those that are
strictly necessary. For example, as we mentioned in Section 2.3.1, it may not be
feasible to support non-monotonicity for all attribute types. Hence, for such types,
it may be better to use a monotone instantiation rather than a non-monotone. Ow-
ing to the flexible compositions of Attrapadung [Att19], such functionalities can be
simultaneously supported in a single instantiation of a scheme.

Generality is key. To flexibly support multiple instantiations, we recommend im-
plementing GLUE and TinyABE as generically as possible, such that the configurable
nature of these schemes carries over to their implementations. Furthermore, on a lower
level, we recommend implementing the underlying arithmetic as generically as possi-
ble, e.g., such that any pairing-friendly curve can be supported. (This does not mean,
however, that optimized arithmetic such as fixed-base exponentations should not be
used. On the contrary, we recommend using it.) In this way, it is easier to upgrade
the implementation to a higher security level, should the used curve be compromised,
or to switch to another curve, should a more efficient one be implemented.

4We consider AC17-LU and not Wat11-IV, because it completely outperforms Wat11-IV.
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